

EFFECTIVE SOLUTION ALGORITHMS FOR BI-OBJECTIVE DISCRETE CONTINUOUS OPTIMIZATION PROBLEMS

Metin Türkay
College of Engineering
Koç University, Istanbul

AlChE Annual Meeting 2014
Atlanta, November 17, 2014
Paper 192d – In Honor of Ignacio E. Grossmann's 65th Birthday II

OUTLINE

- Multi-Objective Discrete-Continuous Optimization Problems
- Terminology
- Existing Methods
 - \checkmark ϵ -constraint method and its extensions
 - ✓ CAN algorithm for finding extreme supported nodominated points
- Novel Algorithms
 - \checkmark ϵ -OA for MINLP
 - ✓ EnpoBOMIP for MILP
- - MINLP
 - > MILP
- Summary

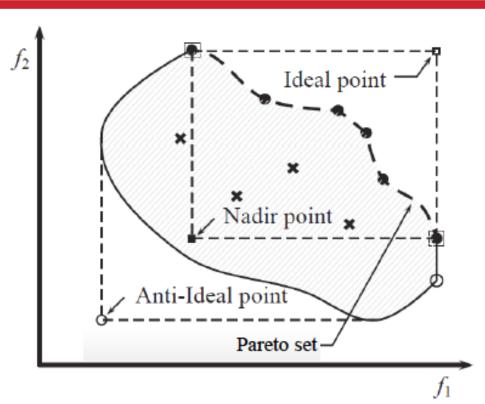
MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization problems (MOOP) involve optimizing simultaneously N objective functions $f_1, f_2, ..., f_N$ over a feasible set X.

$$\max F(x) = (f_1(x), ..., f_N(x))$$
s.t. $x \in X$

- Many survey papers were published (Ulungu&Teghem, 1994; Ehrgott&Gandibleux, 2000; Ehrgott, 2005)
- Research on solution algorithms:
 - Continuous and convex: a variety of algorithms maturing
 - Continuous and nonconvex: a few algorithms
 - Combinatorial: a number of papers in the last 5 years
 - ➤ Discrete-continuous linear: a handful of papers in the last 3 years
 - Discrete-continuous nonlinear: only 5 papers straighforward use of algorithms developed for continuous and convex problems

TERMINOLOGY



- \triangleright Let $x, x' \in X$
- \triangleright x dominates x'

$$f_n(x) \ge f_n(x') \quad \forall n = 1,...,N \text{ and } \exists \tilde{n} \in \{1,...,N\}$$

- with $f_{\tilde{n}}(x) > f_{\tilde{n}}(x')$
- > x strictly dominates x'

$$f_n(x) > f_n(x') \quad \forall n = 1,...,N$$

> x weakly dominates x'

$$f_n(x) \ge f_n(x') \quad \forall n = 1,...,N$$

 $\nearrow x$ is Pareto optimal or efficient $\forall x' \in X$ that does not dominate x

- Ideal Point (Utopia Point): all objectives are optimized simultaneously
- > Anti-Ideal Point: all objectives are at their worst
- > Pareto set: entire set of non-dominated solutions
- Nadir Point: lower bound of each objective in the Pareto set

ϵ -CONSTRAINT APPROACH

➤ Haimes et al., 1971

- ✓ Presented the ϵ -constraint approach to solving MOOP.
- ✓ The maximum and minimum values for all objectives are found separately
- ✓ One of the objectives is retained and the rest of the objectives are converted into constraints
- \checkmark A virtual grid is constructed to include all N-1 objective functions.
- \checkmark Then the following sub-problem is solved iteratively for each i_i

$$\max f_1(x)$$

$$s.t.$$

$$f_j(x) \ge Lb_j + i_j\epsilon_j \quad \forall j = 2,...,N$$

$$x \in X$$

 Lb_j : the lower bound on the objective j ϵ_j : range of the objective j in the iteration i_j

AUGMENTED ε-CONSTRAINT APPROACH

- \triangleright The ϵ -constraint approach may find weakly efficient solutions.
- ➤ Mavrotas, 2009
 - ✓ Modified the ϵ -constraint method by introducing a slack variable to the each objective that is converted into a constraint.
 - ✓ A penalty term with scalar μ (10⁻³-10⁻⁶) is added to the objective

$$\max f_{1}(x) + \mu \sum_{j=2}^{N} r_{j}$$
s.t.
$$f_{j}(x) - s_{j} = Lb_{j} + i_{j}\epsilon_{j} \quad \forall j = 2,..., N$$

$$s_{j} \ge 0 \quad \forall j = 2,..., N$$

 s_j : slack variable for each objective j that is converted into a constraint r_j : the range of objective j

 Lb_j : the lower bound on the objective j ϵ_j : range of the objective j in the iteration i_j

 $x \in X$

CAN

- ➤ The CAN, presented by Cohon1978, Aneja&Nair1979, is an exact algorithm to find all Extreme Supported Nondominated (ESN) points of BOMILPs.
- In each iteration of the CAN two ESN points (ż,ž) are known and the algorithm searches for another ESN point between them.

$$P^{CAN}(\dot{z}, \dot{z})$$
: $\beta = \min z_2 - mz_1 \text{ s.t. } (x,y) \in S$

where $m=(\dot{z}_2-\ddot{z}_2)/(\dot{z}_1-\ddot{z}_1)$.

- > If $\beta = z_2 z_1$, then there is no ESN between (z,ž)
- ➤ Otherwise, a new ESN is found, hence the algorithm continues to search between the new point and ż, and ž.

LOGIC-BASED OA

min
$$Z = (z_1, z_2)$$

$$= \left(\sum_i c_i + f_1(x), \sum_i p_i + f_2(x)\right)$$

s.t.
$$g(x) \leq 0$$
,

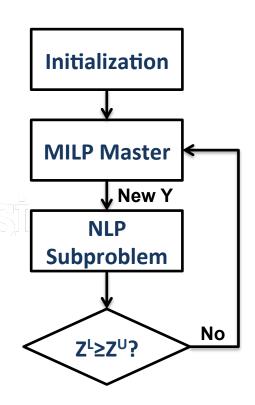
$$egin{bmatrix} Y_i \ h_i(x) \leq 0 \ c_i = \gamma_i \ p_i = \eta_i \end{bmatrix} ee egin{bmatrix} \neg Y_i \ B^i x = 0 \ c_i = 0 \ p_i = 0 \end{bmatrix}$$

$$\Omega(Y) = True$$
,

$$x \in \mathbb{R}^n$$
, $c \ge 0$, $p \ge 0$, $Y \in \{True, False\}^m$.

Turkay&Grossmann, 1996

- Logic-Based OA
- Logic-Based Benders Decomposition



NLP SUBPROMLEMS & MILP MASTER

NLP Subproblems

min
$$Z_U^{aug} = \sum_i c_i + f_1(x) - \frac{\mu}{r} s$$

s.t. $\sum_i p_i + f_2(x) + s = z_2^U - j\epsilon$,

$$g(x) \leq 0$$
,

$$\left. egin{aligned} h_i(x) &\leq 0 \\ c_i &= \gamma_i \\ p_i &= \eta_i \end{aligned} \right\} orall \overline{Y_i} = True,$$

$$\begin{cases}
B^{i}x = 0 \\
c_{i} = 0 \\
p_{i} = 0
\end{cases}
\forall \overline{Y_{i}} = False,$$

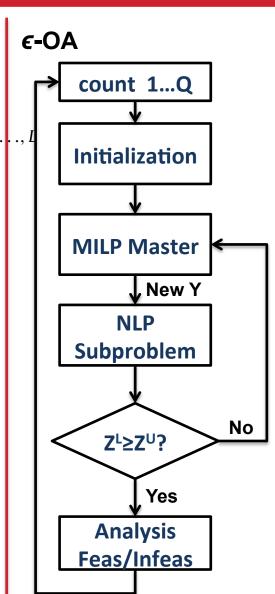
$$x \in \mathbb{R}^n$$
, $c \ge 0$, $p \ge 0$.

MILP Master

$$\begin{aligned} & \min \quad Z_L^{aug} = \sum \gamma_i y_i + \alpha_{oa} - \frac{\mu}{r} s \\ & \text{s.t.} \quad \alpha_{oa} \ge f_1(x^l) + \nabla f_1(x^l)^T (x - x^l) \quad \forall l = 1, \dots, I \\ & g(x^l) + \nabla g(x^l)^T (x - x^l) \le 0 \quad \forall l = 1, \dots, L \\ & \sum_i \eta_i y_i + f_2(x^l) + \nabla f_2(x^l)^T (x - x^l) + s \\ & = z_2^U - j \epsilon \quad \forall l = 1, \dots, L \\ & \nabla h_i(x^l)^T x \le \left(-h_i(x^l) + \nabla h_i(x^l)^T x^l \right) y_i \\ & \forall l = 1, \dots, L, \ i \in D \end{aligned}$$

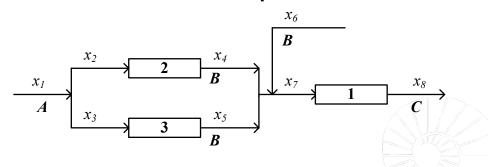
$$\begin{aligned} & B^i x \le M_i y_i \quad \forall i \in D \\ & Ay \le a \\ & \alpha_{oa} \in \mathbb{R}^1, \ x \in \mathbb{R}^n, \ y \in \{0, 1\}^m. \end{aligned}$$

+ No good cuts

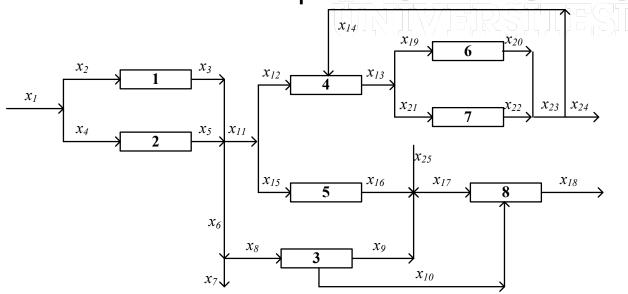


EXAMPLES

➤ 3 Process Example



➤ 8 Process Example



$$\min \qquad Z = (z_1, z_2)$$

$$z_1 = c_1 + c_2 + c_3 + x_4 + 1.8x_1 + 1.2x_5 + 7x_6 - 11x_8$$

$$z_2 = p_1 + p_2 + p_3$$

$$+1.8x_1 + 2x_2 + 3x_3 + x_4 + 1.2x_5 + 7x_6 - 5x_7 - 11x_8$$

$$x_1 - x_2 - x_3 = 0$$
,

$$x_7 - x_4 - x_5 - x_6 = 0$$
,

$$x_5 \leq 5$$
,

$$x_8 \leq 1$$

$$\begin{bmatrix} Y_1 \\ x_8 = 0.9x_7 \\ c_1 = 3.5 \\ p_1 = 3.5 \end{bmatrix} \lor \begin{bmatrix} \neg Y_1 \\ x_7 = x_8 = 0 \\ c_1 = 0 \\ p_1 = 0 \end{bmatrix}$$

$$\begin{bmatrix} Y_2 \\ x_4 = \ln(1+x_2) \\ c_2 = 1 \\ p_2 = 1 \end{bmatrix} \lor \begin{bmatrix} \neg Y_2 \\ x_2 = x_4 = 0 \\ c_2 = 0 \\ p_2 = 0 \end{bmatrix}$$

$$\begin{bmatrix} Y_3 \\ x_5 = 1.2 \ln(1 + x_3) \\ c_3 = 1.5 \\ p_3 = 12 \end{bmatrix} \lor \begin{bmatrix} \neg Y_3 \\ x_3 = x_5 = 0 \\ c_3 = 0 \\ p_3 = 0 \end{bmatrix}$$

$$Y_1 \Rightarrow Y_2 \vee Y_3 \vee (\neg Y_2 \wedge \neg Y_3),$$

$$Y_2 \Rightarrow Y_1$$

$$Y_3 \Rightarrow Y_1,$$

$$\neg Y_2 \vee \neg Y_3$$

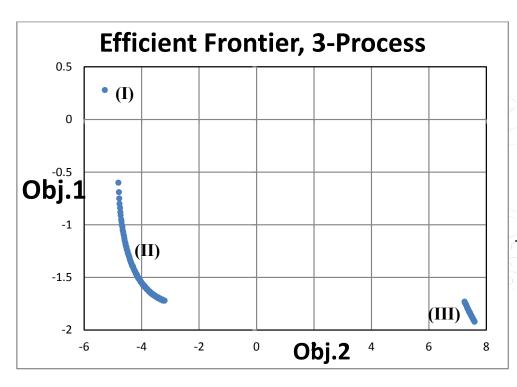
$$x_k \ge 0 \quad \forall k = 1, ..., 8,$$

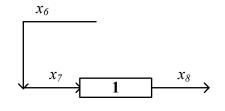
$$c_i, p_i \ge 0 \quad \forall i = 1, 2, 3,$$

$$Y_i \in \{True, False\} \quad \forall i = 1, 2, 3$$

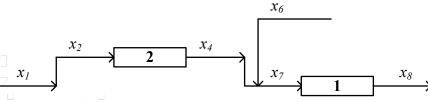
PARETO SOLUTIONS-1

➤ Example 1: 3 process

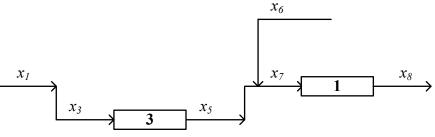




a) Topology for section (I)



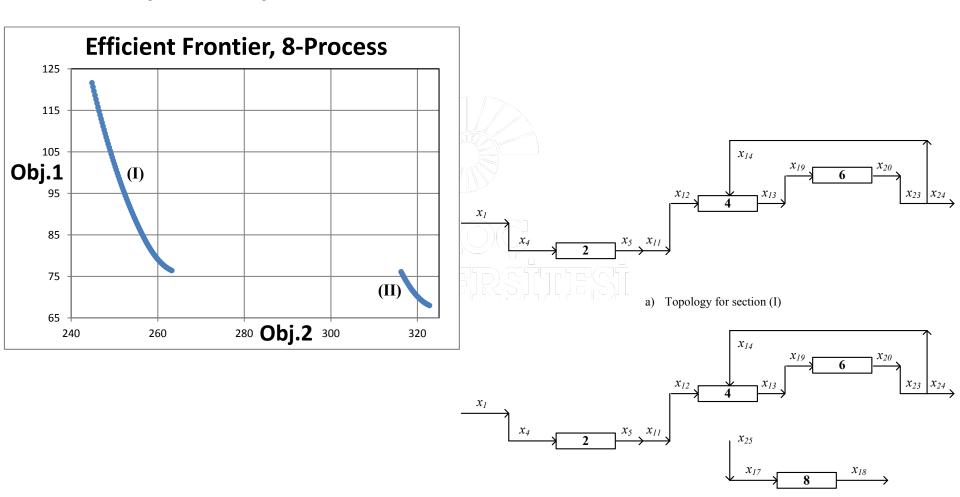
b) Topology for section (II)



c) Topology for section (III)

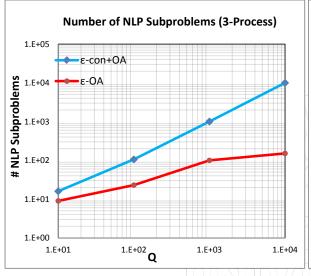
PARETO SOLUTIONS-2

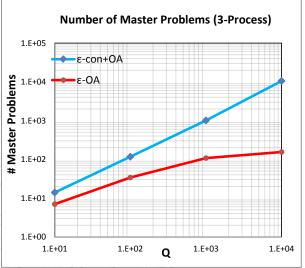
➤ Example 1: 8 process

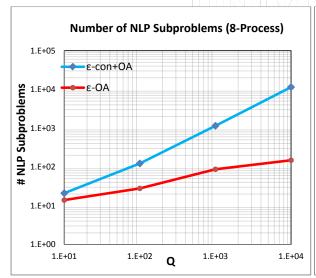


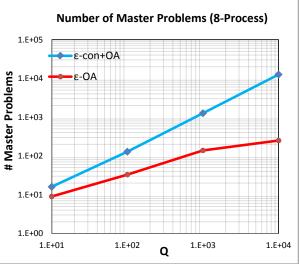
ITERATIONS

> The number of NLP subproblems and MILP master problems



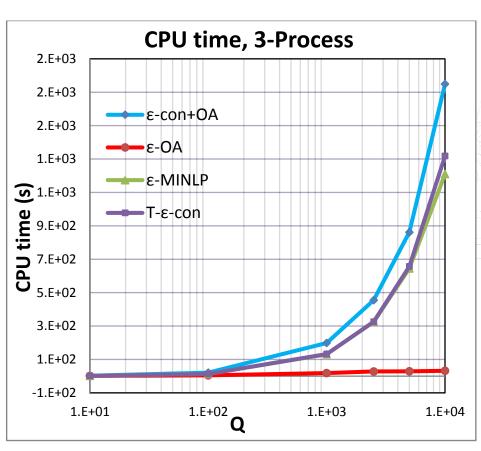


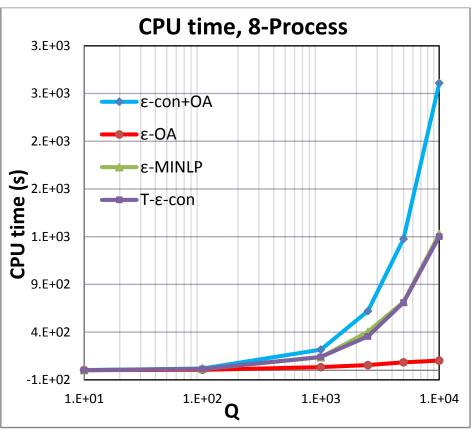




CPU TIMES

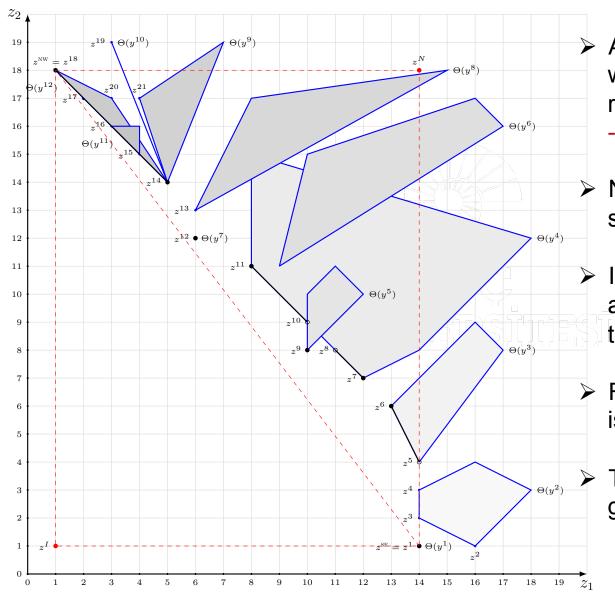
> CPU time comparison





Fattahi&Turkay, Computers & Chem. Eng. 72(2), 199-209 (2015).

ENPOBOMIP



All possible complications with the Pareto set is represented in the figure
 -that we could think of

Nonconvexity of the Pareto set is the main issue

Incremental search algorithms fail to generate the Pareto set

Finding the exact Pareto set is the main purpose

Theoretical analysis to guarantee optimality

ENPOBOMIP

Algorithm 4 $\Phi^* \Leftarrow \text{EnpoBomip}(P)$

```
1: \chi^{\text{CP}} \leftarrow \text{LX}(P_{\text{LX}1}^{\text{SE}}, P_{\text{LX}2}^{\text{SE}}), Set \Phi^* \leftarrow \{\chi^{\text{CP}}\}, Y^{\text{EXC}} \leftarrow \{\}, \xi \leftarrow \text{TRUE}
                   if \phi (\Leftarrow LP^{NEP}(y^{CP})) = z_1^{CP} then
                             Set Y^{\text{EXC}} \leftarrow Y^{\text{EXC}} \cup \{y^{\text{CP}}\}\
                            if z_1^{\text{NP}} < z_1^{\text{CP}} or z^{\text{NP}} = z^{\text{CP}} then
                                               Set \Phi^* \leftarrow \Phi^* \cup \{\chi^{NP}\}, \xi \leftarrow TRUE, \chi^{CP} \leftarrow \chi^{NP}
                                     else Set \chi^{\text{CP}} \leftarrow \chi^{\text{NP}}, \xi \leftarrow \text{False}
                                      end if
 10:
                             else return \Phi^*
11:
                             end if
12:
13:
                             \chi^{\text{NEP}} \Leftarrow \text{FINDNEP}(\chi^{\text{CP}}), \text{ Set } \tilde{Y}^{\text{EXC}} \leftarrow \{\}, \tilde{\Phi} \leftarrow \{\}
14:
15:
                                      if \check{z}_2 \Leftarrow P_{\text{LX1}}^{\text{NCC}}(Y^{\text{EXC}} \cup \check{Y}^{\text{EXC}} \cup y^{\text{CP}}, z^{\text{CP}}, z^{\text{NEP}}) is feasible then
16:
                                                \check{\chi} \Leftarrow \mathbf{P}_{\mathrm{LX2}}^{\mathrm{NCC}}(Y^{\mathrm{EXC}} \cup \tilde{Y}^{\mathrm{EXC}} \cup y^{\mathrm{CP}}, \check{z}_{2})
17:
                                               if \check{z}_1 < z_1^{\text{CP}} then
18:
                                                        Update \tilde{\Phi}, Set \Phi^* \leftarrow \Phi^* \cup (\chi^{CP}, \bar{\chi}) \cup \{\check{\chi}\} \cup \tilde{\Phi}, \chi^{CP} \leftarrow \check{\chi}, \xi \leftarrow \text{TRUE},
19:
           break loop
20:
                                                         if \xi = \text{true then Set } \Phi^* \leftarrow \Phi^* \cup \{\check{\chi}\}
21:
                                                          end if
22:
                                                         if \phi (\Leftarrow LP^{NEP}(\check{y})) < z_1^{CP} then
                                                                  \tilde{\chi} \Leftarrow \text{FINDNEP}(\check{\chi})
24:
                                                                 	ext{if } rac{	ilde{z}_2 - z_2^{	ext{CP}}}{	ilde{z}_1 - z_1^{	ext{CP}}} > rac{z_2^{	ext{NEP}} - z_2^{	ext{CP}}}{z_1^{	ext{NEP}} - z_1^{	ext{CP}}} 	ext{ then }
25:
                                                                           \overset{\sim}{\operatorname{Set}} \tilde{Y}^{\operatorname{EXC}} \leftarrow \overset{\sim}{\tilde{Y}}^{\operatorname{EXC}} \cup \{y^{\operatorname{CP}}\} , \chi^{\operatorname{CP}} \leftarrow \check{\chi}, \chi^{\operatorname{NEP}} \leftarrow \tilde{\chi}, \tilde{\Phi} \leftarrow \{\}
26:
                                                                  else if \frac{\tilde{z}_2 - z_2^{\text{CP}}}{\tilde{z}_1 - z^{\text{CP}}} < \frac{z_2^{\text{NEP}} - z_2^{\text{CP}}}{z^{\text{NEP}} - z^{\text{CP}}} then Set \tilde{Y}^{\text{EXC}} \leftarrow \tilde{Y}^{\text{EXC}} \cup \{\check{y}\}
27:
                                                                  else if z_1^{\text{NEP}} \geq \tilde{z}_1 then Set \tilde{Y}^{\text{EXC}} \leftarrow \tilde{Y}^{\text{EXC}} \cup \{\check{y}\}, \; \tilde{\Phi} \leftarrow \tilde{\Phi} \cup (\check{\chi}, \bar{\tilde{\chi}}) else Set \tilde{Y}^{\text{EXC}} \leftarrow \tilde{Y}^{\text{EXC}} \cup \{y^{\text{CP}}\}, \; \text{update } \tilde{\Phi}, \; \text{Set } \tilde{\Phi} \leftarrow \tilde{\Phi} \cup (\chi^{\text{CP}}, \bar{\chi}^{\text{NEP}})
28:
          , \chi^{\text{CP}} \leftarrow \check{\chi}, \chi^{\text{NEP}} \leftarrow \tilde{\chi},
30:
                                                                  end if
                                                         else Set Y^{\text{EXC}} \leftarrow Y^{\text{EXC}} \cup \{\check{y}\}
31:
                                                          end if
32:
33:
                                                end if
34:
                                      else
                                                Set \Phi^* \leftarrow \Phi^* \cup (\chi^{CP}, \chi^{NEP}] \cup \tilde{\Phi}, \chi^{CP} \leftarrow \chi^{NEP}, \xi \leftarrow TRUE, break loop
35:
                                       end if
36:
37:
                             end loop
                    end if
39: end loop
```

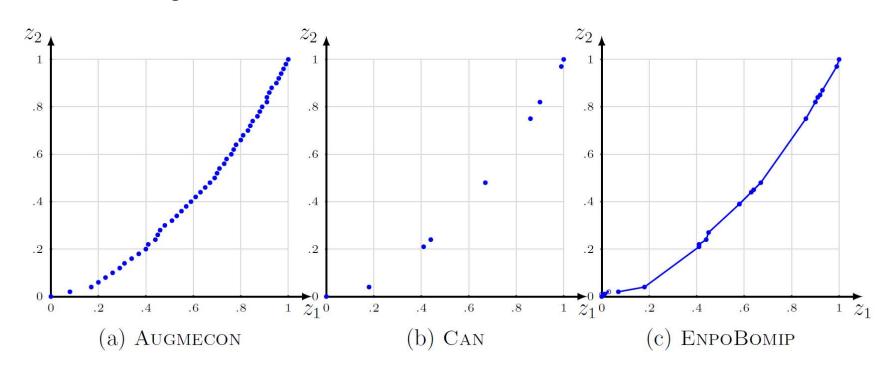
- All cases are embedded in the algorithm
- The exact Pareto set is guaranteed
- > Implementation in GAMS

EXPERIMENTS

- Comparative analysis of AUGMECON, CAN and ENPOBOMIP
- \rightarrow AUGMECON: Q =10,000 and μ =10⁻⁴
- > Three well-known problems:
 - SCPN: Synthesis of Complex Production Networks: The benchmark problems are outlined in (Grossmann, Drabbant, Jain, 1982)
 - 2. FLP: Facility Location Problem: Instances are generated using the algorithm given by Stidsen et al., 2014, m=5, 10. 15, 20, 25, 30, 35
 - 3. FCNDP: Fixed Charge Network Design Problem: Instances are generated using the algorithm given by Stidsen et al., 2014, n=3, ...,9

RESULTS: SCPN

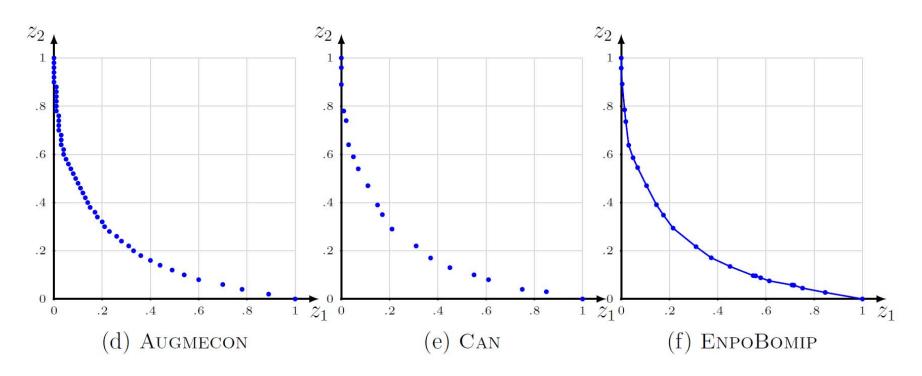
The resulting nondominated frontiers found for biobjective SCPN using the three algorithms



Interfaces: Ignacio shared the model and data that was published in 1982!

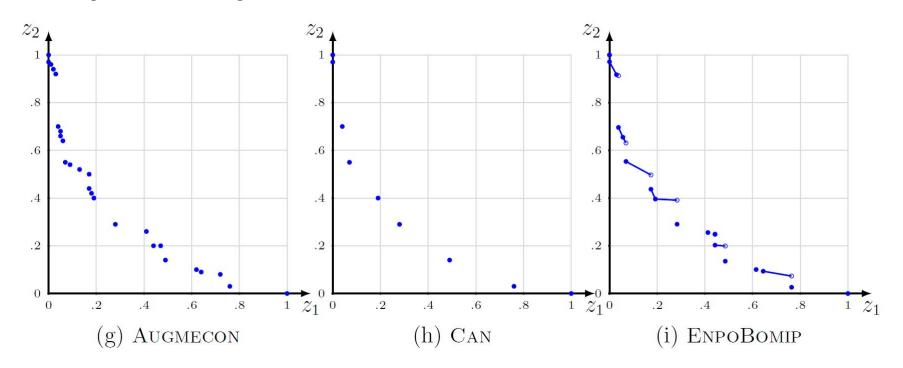
RESULTS: FLP

The resulting nondominated frontiers found for biobjective m=5 FLP using the three algorithms



RESULTS: FCNDP

The resulting nondominated frontiers found for biobjective n=5 FCNDP using the three algorithms



RESULTS: QUALITY

	AUG (NDP)	Can (esn)	Enp(ndls,ndp)	
SCPN	10,001	9	(22,0)	
FLP				
m=5	10,001	20	(24,0)	
m=10	10,001	47	(68,0)	
m=15	9,885	89	(113,0)	
m=20	9,962	121	(201,0)	
m=25	10,001	176	(255,0)	
m=30	9,854	207	(293,0)	
m=35	9,766	273	(380,0)	
FCNDP				
n=3	1,317	6	(4,4)	
n=4	8	3	(8,0)	
<i>n</i> =5	2,512	9	(11,6)	
<i>n</i> =6	8,346	20	(69,7)	
n=7	7,745	24	(94,0)	
<i>n</i> =8	8,354	32	(169,0)	
<i>n</i> =9	7,708	44	(144,0)	
$FCNDP(\times.1)$				
n=3	1	1	(0,1)	
n=4	5	3	(0,5)	
<i>n</i> =5	398	7	(5,10)	
<i>n</i> =6	6,595	11	(29,11)	
n=7	6,916	8	(31,4)	
<i>n</i> =8	3,492	10	(47,6)	
n=9	<u></u> *	14	(78,11)	

 $\rm AUG~(NDP)$: number of nondominated points found by $\rm AUGMECON,~CAN~(ESN)$: number of ESN points found by $\rm CAN,~ENP~(NDLS,NDP)$: number of nondominated line segments and nondominated points found by $\rm ENPOBOMIP$

^{*} the instance is not solved in 15,000 seconds

RESULTS: PERFORMANCE

	Augmecon			ЕпроВомір				
	MILP	TT	MILP	T(MILP)	LP	T(LP)	TT	
SCPN	10,003	1,483.76	45	7.15	114	12.45	19.66	
FLP								
m=5	10,003	924.24	33	2.79	131	9.70	12.57	
m=10	10,003	945.49	98	9.82	515	41.75	51.86	
m=15	9,887	1,081.00	145	15.59	869	80.79	96.98	
<i>m</i> =20	9,964	1,316.60	275	40.34	1,807	195.65	237.39	
<i>m</i> =25	10,003	1,573.24	345	61.98	2,420	306.59	370.90	
m=30	9,856	1,818.51	391	82.77	2,899	429.28	515.41	
m=35	9,768	2,721.94	495	231.97	3,776	1,415.21	1,807.29	
FCNDP								
n=3	1,319	225.67	21	2.24	16	1.61	3.86	
n=4	10	2.02	17	2.20	8	0.87	3.08	
n=5	2,514	359.36	40	5.94	39	4.09	10.06	
n=6	8,348	1,396.80	189	40.23	338	40.31	80.90	
n=7	7,747	2,031.47	212	68.32	494	65.19	134.18	
n=8	8,356	4,153.38	405	231.72	1,289	192.91	426.86	
n=9	7,710	3,925.49	305	228.00	992	182.99	413.25	
$FCNDP(\times.1)$								
n=3	2	0.74	3	0.35	1	0.11	0.46	
n=4	7	1.32	11	1.36	5	0.48	1.84	
n=5	400	66.18	32	4.98	27	2.56	7.57	
<i>n</i> =6	6,597	2,066.65	98	44.74	144	16.15	61.05	
n=7	6,918	4,697.94	82	71.37	135	19.21	90.78	
n=8	3,494	12,848.55	130	495.32	195	27.62	523.35	
n=9		 *	209	842.31	328	59.23	902.48	

MILP: number of MILP resolutions, TT: total running time, T(MILP): total CPU time spent for MILP resolutions, LP: number of LP resolutions, T(LP): total CPU time spent for LP resolutions

^{*} the instance is not solved in 15,000 seconds

SUMMARY

- ➤ Generation of the Pareto set for bi-objective discretecontinuous optimization problems is challenging
- ➤ We have effective algorithms to generate the efficient set for bi-objective MINLP and MILP
- >MILP
 - ✓ Exact Pareto set is guaranteed
 - ✓ Computationally superior than competing algorithms
 - ✓ Quality of solutions is much better

>MINLP

- ✓ Approximation of the Pareto set
- ✓ Network Synthesis Problems: the performance does not suffer from the second objective

ACKNOWLEDGEMENTS

- ➤ Ali Fattahi, MS Thesis
- ➤IBM: SUR Award + Faculty Award
- ➤TUBITAK: 104M322 Project
- ➤ European Commission: InTraRegio Project (Contract: 286975)

> Ignacio for being a mentor and inspiration always.

HAPPY 65th IGNACIO!