

Imperial College London

Advances in multi-parametric programming & explicit Model Predictive Control

Stratos Pistikopoulos

Session in honor of Professor Ignacio E. Grossmann

Outline

- Multi-parametric programming & control how it started [with Ignacio – of course!]
- Multi-parametric programming & control brief status report
- Focus on
 - mp-MIQP [the exact solution]
 - □ The PAROC framework & software

Professor Ignacio E. Grossmann Wise Men Sense Things about to Happen

For the gods know the future, men the present, but wise men that which is approaching

(Philostratos, On Apollonios of Tyana, viii, 7)

How it started

- Work on flexibility w/Ignacio (1984-1988)
 - active sets
 - explicit expressions fro feasibility/flexibility

Imperial College London

How it started

Work on flexibility w/Ignacio - for example,
 Pistikopoulos & Grossmann – appendix c
 (1988)

OPTIMAL RETROFIT DESIGN FOR IMPROVING PROCESS FLEXIBILITY IN LINEAR SYSTEMS

E. N. PISTIKOPOULOS and I. E. GROSSMANN

Computers & Chemical Engineering, Volume 12, Issue 7, July 1988, Pages 719-731

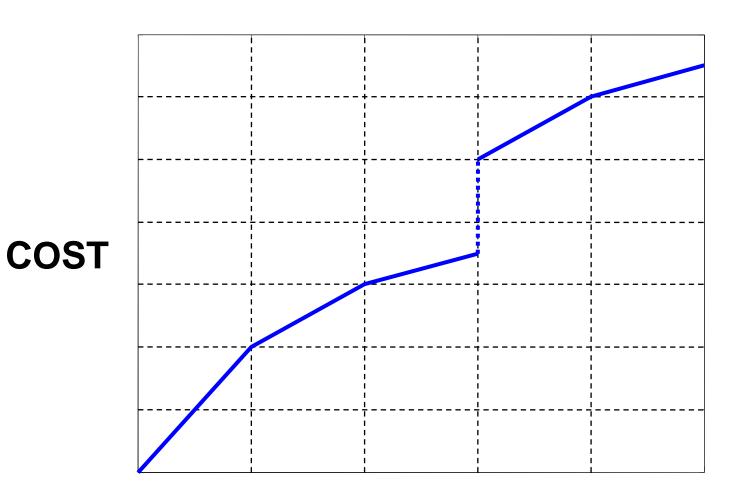
Abstract--In this paper the problem of optimally redesigning an existing process to increase its flexibility is addressed. Assuming a linear model for the process, a general strategy is proposed which determines first the optimal parametric changes and then identifies the optimal structural modifications. Basic analytical properties of flexibility are presented with which very efficient reduced LP and MILP formulations can be developed that include explicit constraints for flexibility. Also, trade-off curves relating flexibility to retrofit cost can easily be generated to provide information on the cost of flexibility. Examples are presented to illustrate the proposed procedures.

Appendix c - Trade-off Curve for Cost vs Flexibility--MILP Case

Appendix c - Trade-off Curve for Cost vs Flexibility--MILP Case

In this appendix, it will be shown how the trade-off curve of cost vs flexibility can be obtained when fixed cost charges are included. A typical trade-off curve for this MILP problem is shown in Figure C1. It exhibits two important features: (a) it is discontinuous at the break points defined by the change of the limiting active sets; (b) it might be piecewise continuous within the region characterized by the same limiting active sets due to a change of the design variables to be modified.

The above features suggest that for generating the MILP trade-off curve it suffices to identify the points of discontinuity (i.e. change of the limiting active sets), as well as the possible break points within the region associated to a given active set.



F

Outline

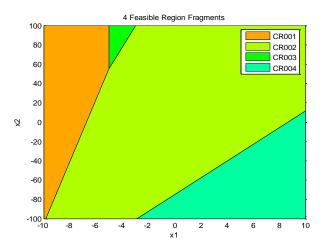
- Multi-parametric programming & control how it started [with Ignacio – of course!]
- Multi-parametric programming & control brief status report
- Focus on
 - mp-MIQP [the exact solution]
 - □ The PAROC framework & software

Multi-parametric programming

$$\min_{u} \left(-3u_1 - 8u_2 \right) \\
st.$$

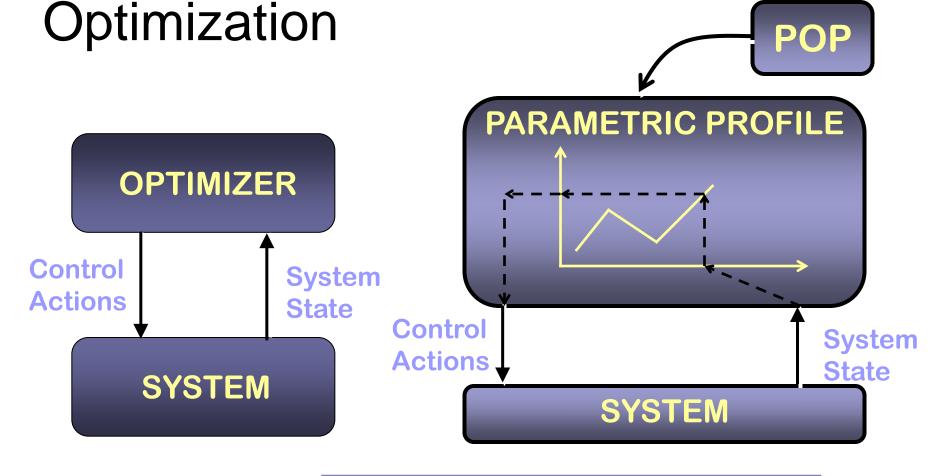
$$\begin{bmatrix} 1 & 1 \\ 5 & -4 \\ -8 & 22 \\ -4 & -1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & 0 \\ 0 & -1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -13 \\ -20 \\ -121 \\ 8 \end{bmatrix} \le \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-10 \le x_1 \le 10, -100 \le x_2 \le 100$$



$$U = \begin{cases} \begin{bmatrix} -0.333 & 0 \\ 1.333 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} -1.6667 \\ 14.6667 \end{bmatrix} & \text{if} & \begin{bmatrix} 1 & -0.03125 \\ -1 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} -6.71875 \\ -5 \\ 10 \\ 100 \\ 100 \end{bmatrix} \\ \begin{bmatrix} 0.7333 & -0.0333 \\ 0.26667 & 0.03333 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 5.5 \\ 7.5 \end{bmatrix} & \text{if} & \begin{bmatrix} 1 & -0.115385 \\ -1 & 0.03125 \\ -1 & 0.0454545 \\ 0 & 0 & -1 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 8.65385 \\ 6.71875 \\ 7.5 \\ 10 \\ 100 \\ 100 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 13 \end{bmatrix} & \text{if} & \begin{bmatrix} 1 & -0.0454545 \\ -1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} -7.5 \\ 5 \\ 100 \end{bmatrix} \\ \begin{bmatrix} 0 & 0.05128 \\ 0 & 0.0641 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 11.8462 \\ 9.80769 \end{bmatrix} & \text{if} & \begin{bmatrix} -1 & 0.115385 \\ 1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} -8.65385 \\ 100 \\ 100 \end{bmatrix} \end{cases}$$

On-line Optimization via off-line

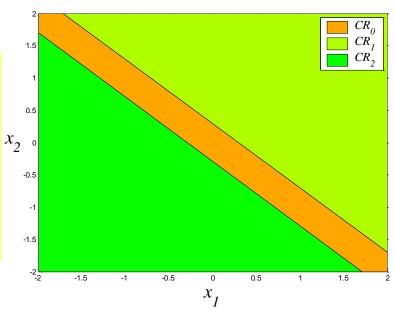


Function Evaluation!

Explicit Control Law

$$J(x(t)) = \min_{u_{t|t}, u_{t+1|t}} \sum_{j=0}^{1} \left\{ \mathbf{x}_{t+j|t}^{T} \mathbf{x}_{t+j|t} + 0.01 \ \mathbf{u}_{t+j|t}^{2} \right\} + \mathbf{x}_{t+2|t}^{T} P \mathbf{x}_{t+2|t}$$
s.t
$$\mathbf{x}_{t+j+1|t} = \begin{bmatrix} 0.7326 & -0.0861 \\ 0.1722 & 0.9909 \end{bmatrix} \mathbf{x}_{t+j|t} + \begin{bmatrix} 0.0609 \\ 0.0064 \end{bmatrix} \mathbf{u}_{t+j|t}$$

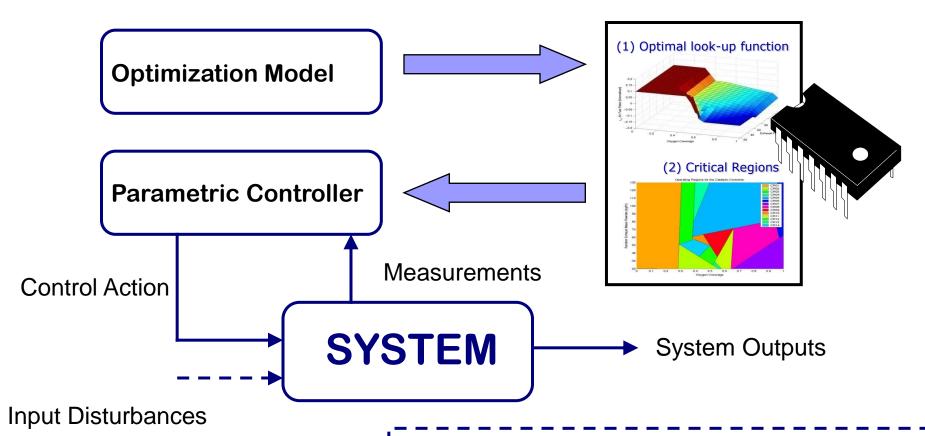
$$-2 \le \mathbf{u}_{t+j|t} \le 2 \quad j = 1, 2 \quad \mathbf{x}_{t|t} = \mathbf{x}(t)$$



$$\mathbf{u}(t) = \begin{cases} [-6.8355 - 6.8585] \mathbf{x}(t) & \text{if } \begin{bmatrix} 0.7059 & 0.7083 \\ -0.7059 & -0.7083 \end{bmatrix} \mathbf{x}(t) \le \begin{bmatrix} 0.2065 \\ 0.2065 \end{bmatrix} \\ -2 & \text{if } [-0.7059 & -0.7083] \mathbf{x}(t) \le -0.2065 \end{cases}$$

$$2 & \text{if } [0.7059 & 0.7083] \mathbf{x}(t) \le -0.2065$$

Multi-parametric Controllers



MPC-on-a-chip!

- Explicit Control Law
- Eliminate expensive, on-line computations
- Valuable insights!

Multi-parametric programming & Model Predictive Control [MPC]

- Theory of multi-parametric programming
 - Multi-parametric mixed integer quadratic programming [mp-MIQP]
 - Multi-parametric dynamic optimization [continuous-time, mp-DO]
 - Multi-parametric global optimization
- Theory of multi-parametric/explicit model predictive control [mp-MPC]
 - □ Explicit robust MPC of hybrid systems
 - Explicit MPC of continuous time-varying [dynamic] systems
 - □ Explicit MPC of periodic systems
 - Moving Horizon Estimation & mp-MPC

Multi-parametric programming & Model Predictive Control [MPC] – cont'd

- Framework for multi-parametric programming & control
 - Model approximation [from high fidelity models to the design of explicit MPC controllers]
 - Software development, prototype & demonstrations [for teaching & research]

Application areas

- Fuel cell energy system experimental/laboratory
- □ Car system control prototypes/laboratory
- □ Energy systems [CHP and micro-CHP]
- Bio-processing [continuous production & control of monoclonal antibodies]
- Pressure Swing Absorption [PSA] and hybrid systems
- Biomedical Systems

Outline

- Multi-parametric programming & control how it started [with Ignacio – of course!]
- Multi-parametric programming & control brief status report
- Focus on
 - □ mp-MIQP [the exact solution]
 - □ The PAROC framework & software

mp-MIQP — Problem Formulation

$$z(\theta) = \min_{x,y} (Q\omega) + H\theta + c)^{T} \omega$$
s.t.
$$Ax + Ey \le b + F\theta$$

$$x \in \mathbb{R}^{n}, \quad y \in \{0, 1\}^{p}, \quad \omega = \begin{bmatrix} x^{T} \ y^{T} \end{bmatrix}^{T}$$

$$\theta \in \Theta = \{\theta \in \mathbb{R}^{q} | \theta_{l}^{min} \le \theta_{l} \le \theta_{l}^{max}, l = 1, ..., q\},$$

$$Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ H = \begin{bmatrix} 5 & -2 \\ 0 & -8 \\ -2 & 3 \\ -3 & -1 \end{bmatrix}, \ c = \begin{bmatrix} 0 \\ 0 \\ -5 \\ 0 \end{bmatrix}$$

- The key cl

 - □ Presei

Noncc Presei Comp
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}, E = \begin{bmatrix} 0 & -1 \\ -1 & 2 \\ 3 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, b = \begin{bmatrix} 1.5 \\ 1 \\ 1 \\ 1 \end{bmatrix}, F = \begin{bmatrix} 0 & 2 \\ 2 & 0 \\ 2 & 0.5 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

mp-MIQP Problems - Earlier Approaches

Dua et al. (2002): Decomposition-type approach

No comparison of objective function

Enclosure of solutions

Axehill et al. (2014): Branch-and-bound approach

Comparison over entire critical region

Enclosure of solutions

Oberdieck et al. (2014): Branch-and-bound approach

Direct comparison using linearization via McCormick

relaxations (1976)

Enclosure of solutions

This approach Applicable to branch-and-bound and decomposition-type

approaches

Piecewise affine approximation of critical region using

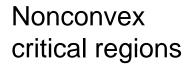
McCormick relaxations (1976)

Exact solution

Applications - hybrid control, reactive/proactive scheduling under uncertainty, etc

mp-MIQP Problems - The exact solution

Comparison of quadratic objective functions



Step 1

Create piecewise affine Solve mp-QP in affine McCormick relaxations for quadratic boundaries

Step 2

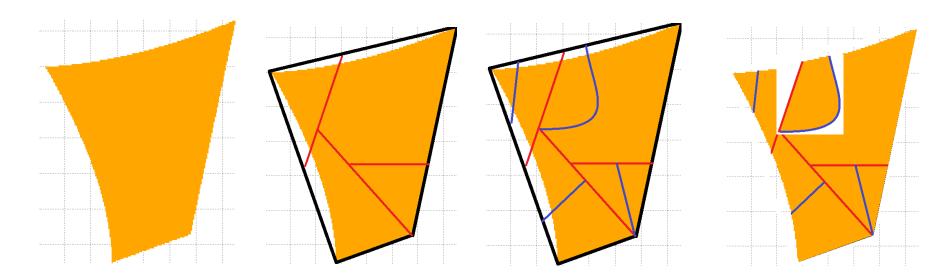
space

Step 3

Compare with upper bound

Step 4

Re-introduce original nonaffine constraints and continue with next CR



Imperial College London

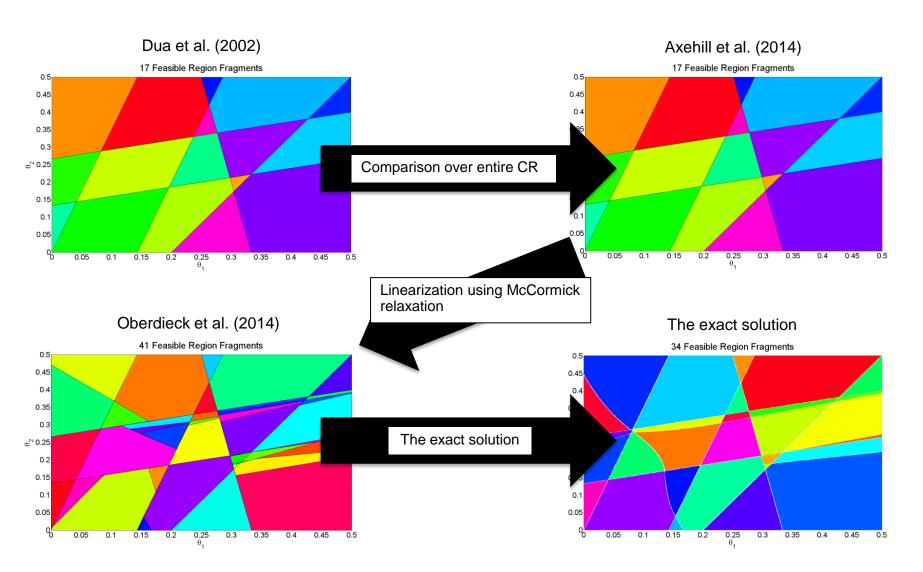
mp-MIQP Problems - Computational Results

Procedure	CPU Time (s)	# CRs	Avg. sol/CR
None (used in Dua et al., 2002)	0.7610	17	3.412
MinMax (Axehill et al., 2014)	1.0126	17	2.059
Affine (Oberdieck et al., 2014)	1.6646	41	1.268
Exact Solution (Oberdieck and Pistikopoulos, 2014)	1.4637	34	1

Similar computational times

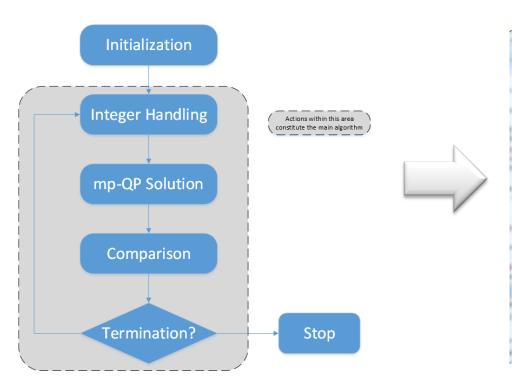
Lowest (possible) number of solutions per CR

mp-MILP problems - Comparisons



mp-MIQP Problems - Solution platform

- All approaches follow a general framework
- This has led to a software solution

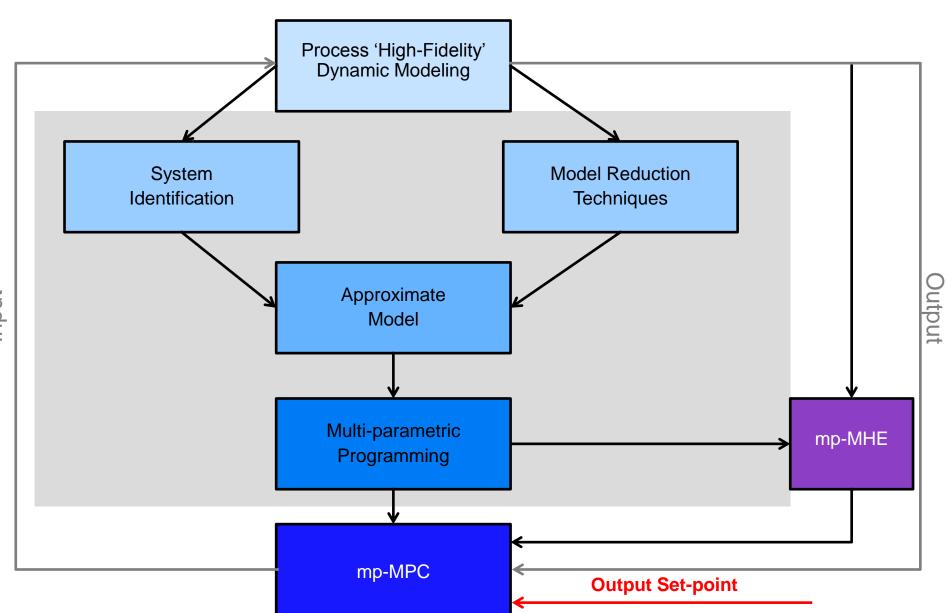


№ RIMmpMIQP	-81			
Imperial College London	RII	ИтрМІС	QP =	Help About
Problem Selection Problem from Workspace or Problem from Library?	•	Parameters: Variables Continuous: Binary:	Constraints Equality: Inequality:	System MATLAB: R2013a NAG: On CPLEX: Off GAMS: On
Predefined Settings None		•		
Options Initialization Upper Bound? How many threads?		Handling o handle integers?	Post-Processi Save? Display the Display inf	e solution?
Absolute suboptimality?	Comp		Plot timing Plot stats	7
Reset	So	lve the Problen	n	Export to .m file

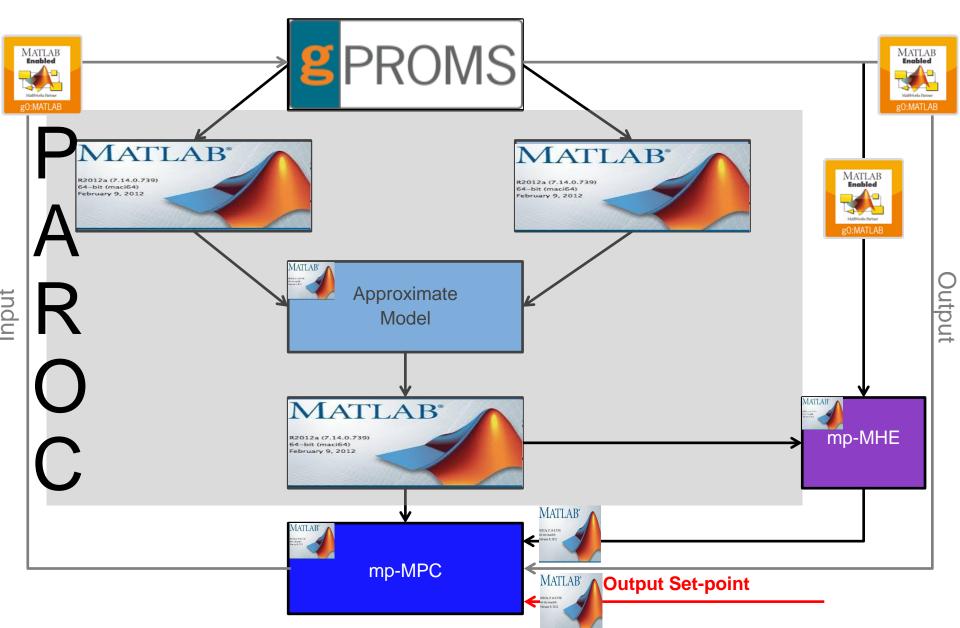
Outline

- Multi-parametric programming & control how it started [with Ignacio – of course!]
- Multi-parametric programming & control brief status report
- Focus on
 - □ mp-MIQP [the exact solution]
 - □ The PAROC framework & software platform

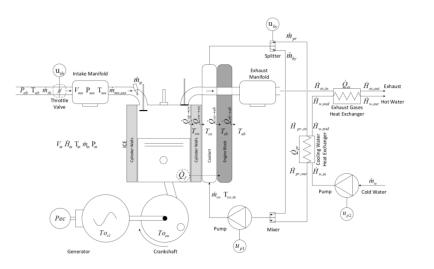
PAROC Framework

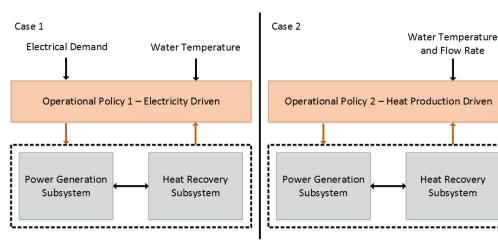


PAROC Framework - Software



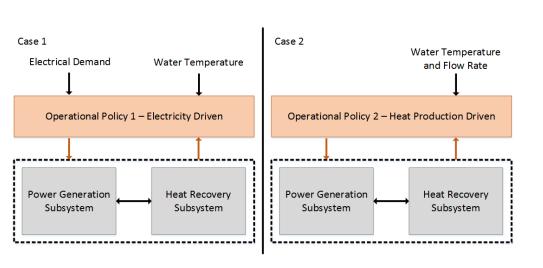
PAROC Framework – CHP



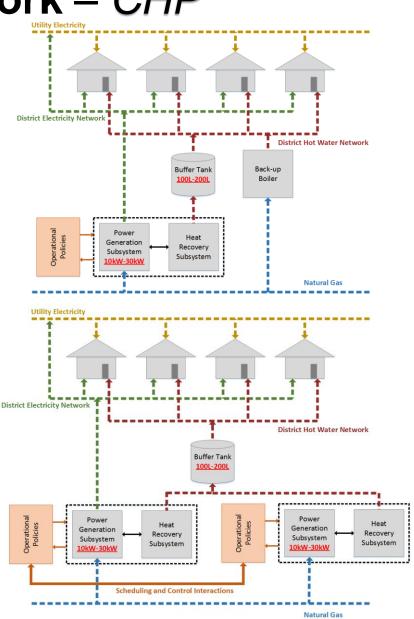


- Cogeneration of heat and power production – trade offs
- Design and control interactions

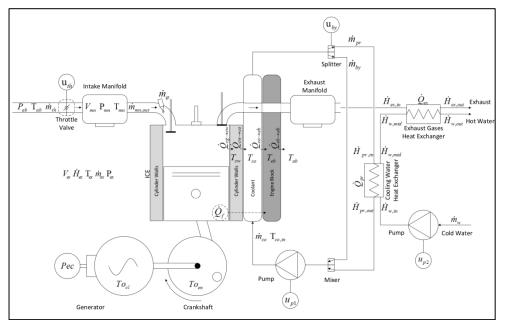
PAROC Framework – CHP



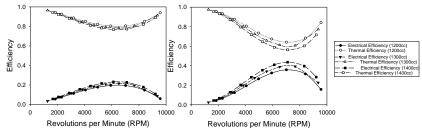
- Cogeneration of heat and power production – trade offs
- Design and control interactions
- Scheduling and control interactions
- Unified modelling representation
- Grand unification of design scheduling and control



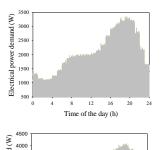
CHP - Dynamic modeling and model validation



Simulation, validation and dynamic optimisation results



- Complex DAE System
 - 379 Model Equations
 - 15 Differential Equations
 - 4 Degrees of Freedom
- 2 Design variables
- 2 Operational set-points

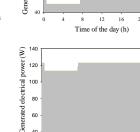


12

Time of the day (h)

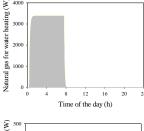
3500 3000

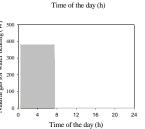
2500 2000 1500



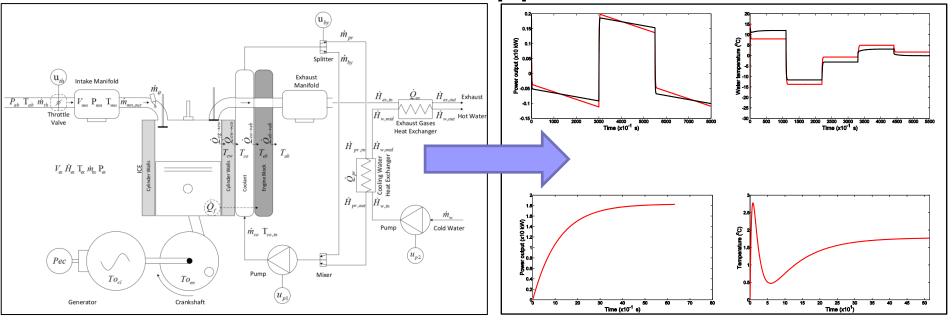
12

Time of the day (h)





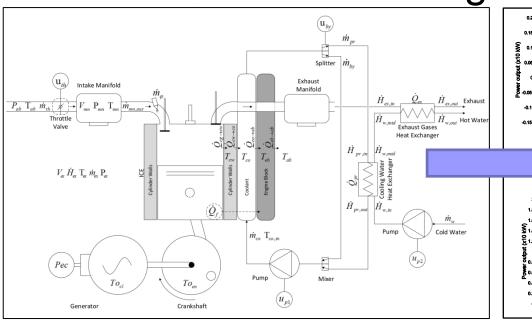
CHP - Model Approximation



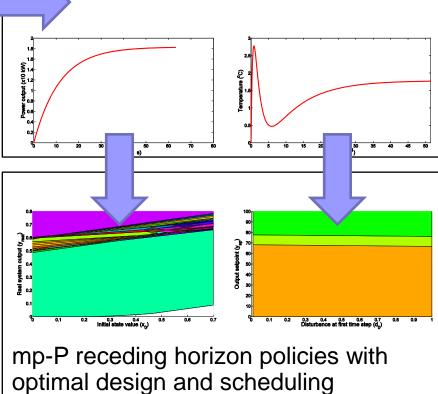
- Model Approximation via MATLAB® System Identification Toolbox
 - □ Identification of two state-space models
 - SISO Power generation subsystem with design variable dependency treated as uncertainty
 - SISO Heat Recovery subsystem with measured disturbance and design variable dependency treated as uncertainty
- Design optimization dependent state-space models
- Scheduling optimisation dependent production set-points

Imperial College London

CHP - Receding horizon policies



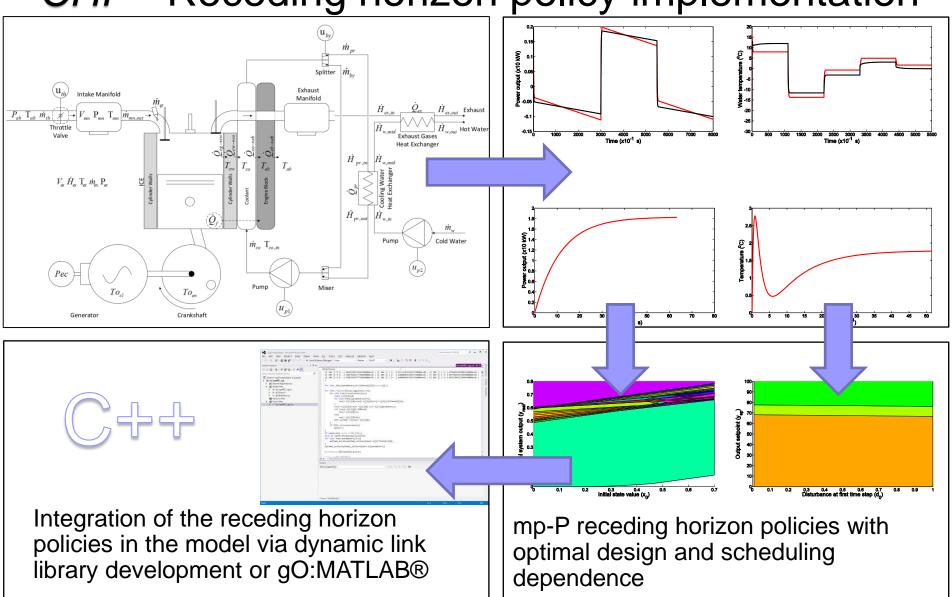
- Decentralised mp-MPC to tackle contradictory objectives
- Realisation of the inherent design uncertainty via dynamic optimization
- Optimal scheduling-dependent output set-points



0 4000 : Time (x10⁻¹ s)

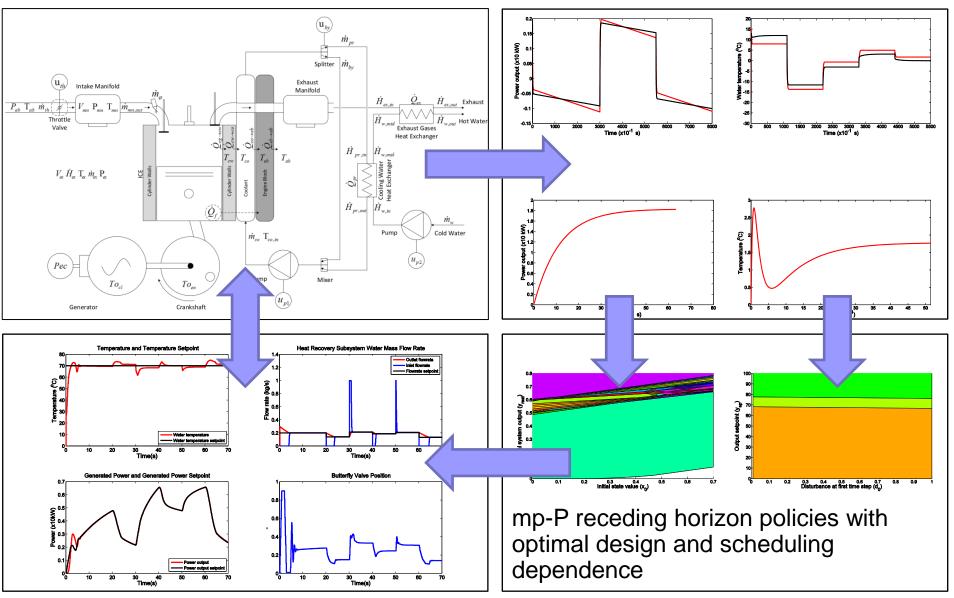
dependence

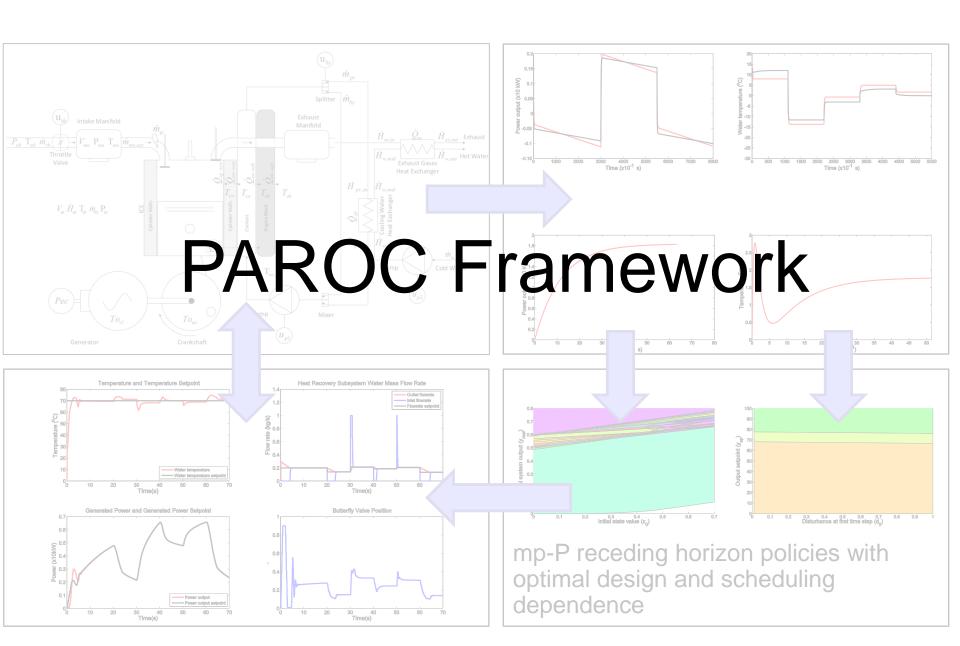
CHP - Receding horizon policy implementation



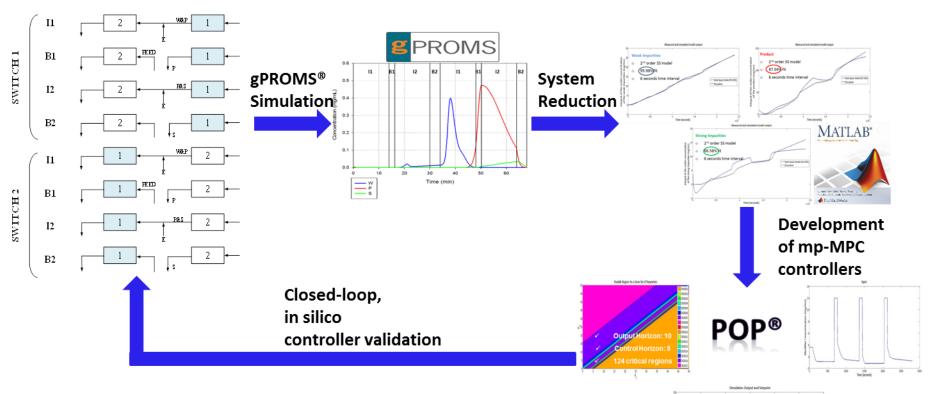
Imperial College London

CHP - Closed-loop validation



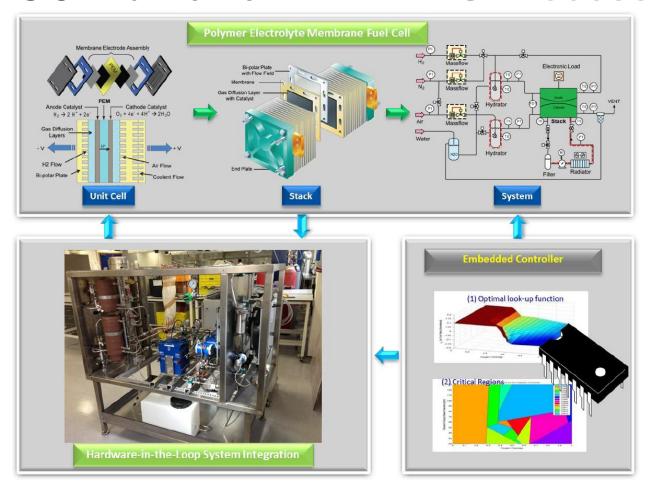


PAROC Framework – MCSGP Process



- **Semi-continuous** chromatographic separation designed for biopharmaceutical applications.
- Periodic, nonlinear system.
- Use of **software interoperability** for the controller development.
- Obtain high purity and yield under **continuous** operation.

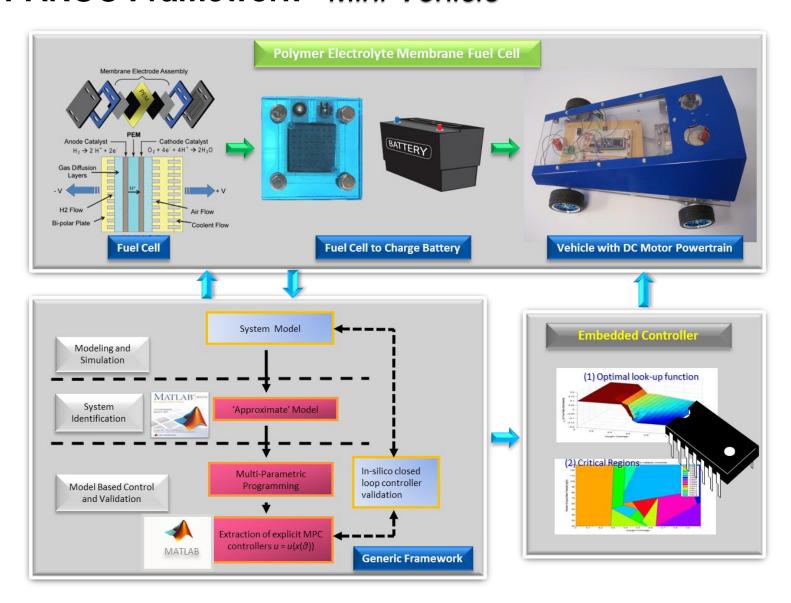
PAROC Framework – PEMFC Process

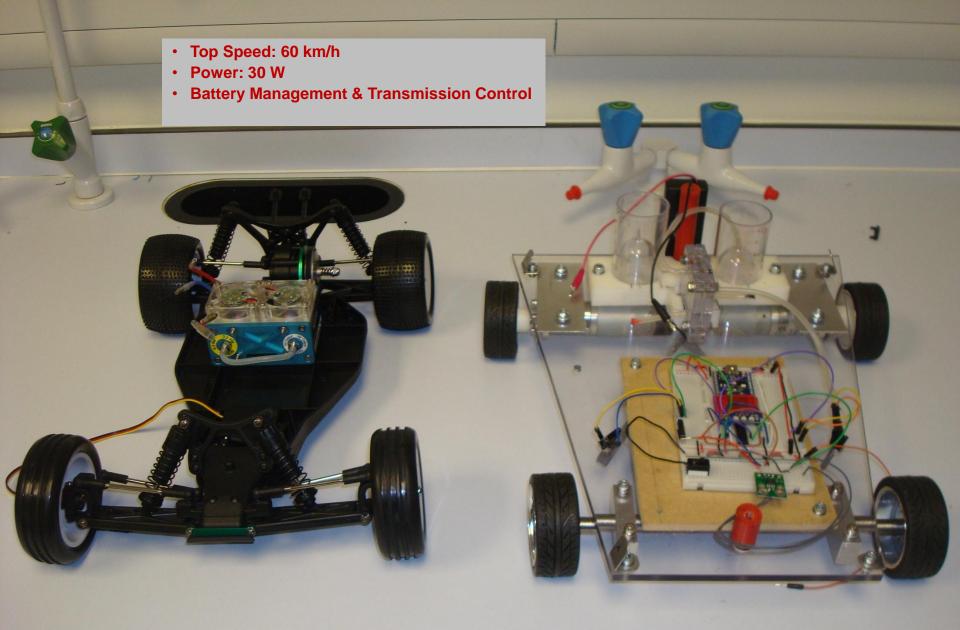


Control critical for the robust operation of the fuel cell system— essential for:

- uninterruptable power demand under load variations
- high efficiency and performance under uncertainty
- reliability and longevity

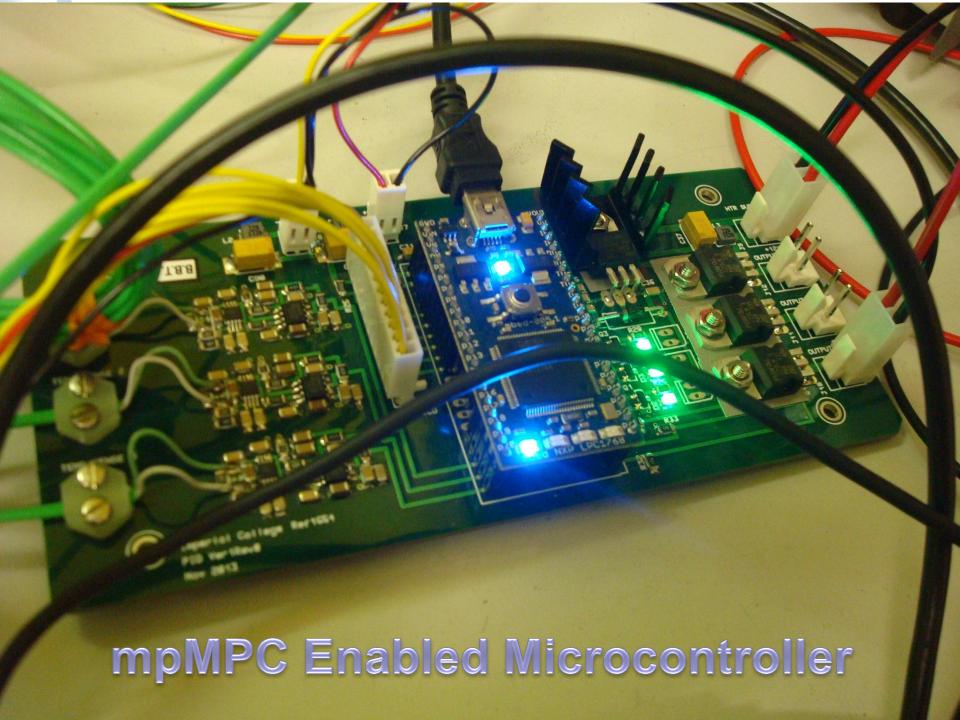
PAROC Framework - Mini Vehicle



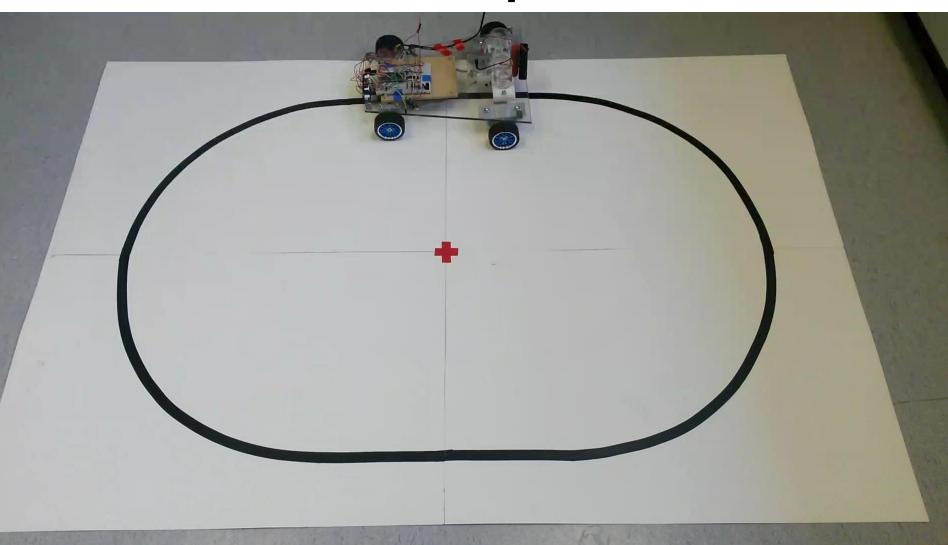


Version 2.0 Version 1.0

Amit M. Manthanwar, Jubeda Khatun and Aksat Shah



Demonstration of mp-MPC



To our parents we owe our being To our teachers we owe our well being

(Alexander the Great)

THANK YOU IGNACIO!

... for your inspirational Academic Leadership, **Pioneering Vision & continuous Quest for Excellence**

To our parents we owe our being To our teachers we owe our well being

(Alexander the Great)

& HAPPY 65th Birthday!

Imperial College London

Advances in multi-parametric programming & explicit Model Predictive Control

Stratos Pistikopoulos

Session in honor of Professor Ignacio E. Grossmann