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Introduction  
 
 Numerical problem solving was introduced into the Chemical Engineering education and 
practice in the early nineteen sixties (Shacham et al. 1996). At that time, Fortran or other 
source code programming languages were used to implement the numerical solution 
algorithms on "mainframe" computers. Starting in the mid 1980’s, the emphasis shifted to the 
use of general purpose mathematical software packages, such as MAPLE, MATHCAD, 
MATLAB, Mathematica and PolyMath for numerical problem solving using the PCs and MACs. 
Mathematical software packages are currently used for routine numerical problem solving in 
engineering education and practice (Cutlip et al., 1998, Shacham and Cutlip, 1999) as they are 
easy to use and provide the most time efficient route for obtaining accurate solutions. 
 The dominant position of the PC and MAC in the personal computing field has been 
challenged lately by the mobile devices such as smartphones and tablets. Furthermore, it is 
predicted that by 2017 the dominant operating system for all computing devices will be 
Google's Android (Wingfield, 2013). Relying on these trends and predictions, we decided to 
check the possibility of the use of Android-based smartphones, tablets and computers for 
general numerical problem solving. For this aim, we have developed the PolyMathLite (PML) 
application for Android-based devices. This app is a slightly simplified version of the Polymath 
software package (PolyMath is a product of Polymath Software http://www.polymath-
software.com).  It is significant that the numerical algorithms used in PML are essentially the 
same and provide the same efficient and accurate solutions as those employed in PolyMath for 
the PC. 
 PolyMathLite enables users to obtain numerical solutions to a wide range of problems from 
relatively simple ones that may be appropriate for users taking advanced level coursework in 
high school to much more complex courses found in technical schools, colleges, and 
universities.  It will be very applicable for the STEM areas of study namely science, technology, 
engineering and mathematics.  It can even support academic programs and research at the 
MSc or PhD levels. PML eliminates the dependence on computers and the internet for solving 
problems numerically, thus solutions can be worked out in regular classrooms as part of a 
recitation session or an exam. Travel and waiting time can be efficiently utilized for problem 
solving. No internet connection is required for setting up or achieving problem solutions. The 
solution is obtained using the most sophisticated solution algorithms and the results are 
presented in tabular and graphical forms for easy interpretation. When satisfactory versions of 
the problem definition and its solutions are reached, they can be saved on the Android 
smartphone, tablet or computer. They can also be shared with external applications such as e-
mail, text viewers, cloud storage devices, etc. and integrated into reports and presentations. 

http://www.polymath-software.com/
http://www.polymath-software.com/
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 In the following examples, the use of PLM for setting up and solving several general types 
of numerical problems will be demonstrated for two extremes - a very simple and a fairly 
complex example.  
 
Create your own sophisticated calculator 
 
 There are calculations involving one or several explicit algebraic equations which must be 
carried out frequently for different parameter values. PML enables setting up the system of 
equations, solving it for one set of parameter values and saving it for future use. The problem 
can be reloaded, whenever necessary, and resolved for different sets of parameter values. 
 Consider for example a problem involving the calculation of constant annual payment 
(Pmt) and future value (Fn) for a loan with amount of P, to be repaid in n years with interest 
rate of i. The parameters of this problem are: P, n and i. Setting P = 1000, n = 25 and i = 10% 
the problem can be entered into PML as shown in phone Display 1 along with the on-display 
entry keyboard. 
 

  
Display 1 

 
 Note that the # sign indicates a user comment section.  The text in the first line must 
contain a comment which is used for the problem identification and reload when a problem is 
saved. Except in the first line, PML disregards the text inserted after the # sign. The constant 
definitions and the explicit equations can be entered in any order as PML reorders the 
equations according to the computational sequence. The problem is solved by a tap on the 
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"Run" button. If there are errors in the problem code syntax, then feedback is given along with 
the line numbers.  When the problem is entered correctly, the PML report that contains the 
variable values at the solution is presented as shown in Display 2. In this particular case the 
solution is: Pmt = $110 and Fn = $10800.  

 
Display 2 

 
 The problem can be saved with the title of "# Constant annual payment" and rerun with 
different parameter values whenever necessary. 
 
 A more complex problem consisting of explicit (only) equations involves, for example, the 
preparation of a calculator for temperature dependent liquid properties of the water between 
the melting point and the critical temperature. The following set of equations can carry out 
those calculations. 
 

# Physical property calculator for water (liquid) 

# Valid Temperature Range: 273.16K to 647.096K 

HVP_H2O = 52053000 * (1 - T / 647.096) ^ (0.3199 - 0.212 * T / 647.096 + 0.25795 * (T / 647.096) ^ 2) 
# J/kmol (Uncertainty < 1%) 

LDN_H2O = 17.863 + 58.606 * (1 - T / 647.096) ^ 0.35 - 95.396 * (1 - T / 647.096) ^ (2/3)+ 213.89 * (1 - 
T / 647.096) - 141.26 * (1 - T / 647.096) ^ (4/3) # kmol/m^3 (Uncertainty < 1 %) 

VP_H2O = exp(73.649 - 7258.2 / T - 7.3037 * ln(T) + 4.1653E-06 * T ^ 2) # Pa (Uncertainty < 0.2%) 

# Valid Temperature Range: 273.16K to 533.15K 

LCP_H2O = 276370 - 2090.1 * T + 8.125 * T ^ 2 - 0.014116 * T ^ 3 + 9.3701E-06 * T ^ 4 # J/kmol*K 
(Uncertainty < 1%) 

# Valid Temperature Range: 273.16K to 633.15K 

LTC_H2O = -0.432 + 0.0057255 * T - 8.078E-06 * T ^ 2 + 1.861E-09 * T ^ 3 # W/m*K (Uncertainty < 1%) 

# Valid Temperature Range: 273.16K to 646.15K 

LVS_H2O = exp(-52.843 + 3703.6 / T + 5.866 * ln(T) - 5.879E-29 * T ^ 10) # Pa*s (Uncertainty < 3%) 

T=300 #K 

 
Table 1 
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This set of equations is so large that the display needs to be adjusted with the use of the finger 
to locate the portion of the equation set that is of interest.  The display showing the upper left of 
the equation set is shown in Display 3. 
 

 
 

Display 3 
 

 This use of PLM as a "calculator" provides the following property values: heat of 
vaporization (HVP_H2O), liquid density (LDN_H2O), vapor pressure (VP_H2O), heat capacity 
(LCP_H2O), thermal conductivity (LTC_H2O) and viscosity (LVS_H2O). The source of the 
equations representing the various properties is the DIPPR database (Rowley et al., 2010). 
DIPPR provides, also, uncertainty estimates on the calculated values and temperature range 
of validity for the equations. For most properties the temperature range is from the melting 
point (273.16 K) to the critical point (647.096 K). For some of the properties (LCP_H2O, 
LTC_H2O and LVS_H2O), the upper limit is slightly lower than the critical temperature. 
Selecting a temperature value (T = 300 K, in this case) and tapping the "Run" button yields the 
results given in Display 4.  Note that the temperature-dependent equations like those of Table 
1 would be very useful in problems where the temperature is changing during the calculations. 
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Display 4 
Fitting Lines, Curves, and Equations to Data 
 
 Computations involving the fitting of a straight line, a polynomial or a complex 
mathematical model to data (regression) are very widely used in many disciplines. The 
textbook of Montgomery and Runger (2011) contains examples involving regressions from the 
disciplines of biology, chemistry, physics, economics, medicine, sports and chemical, civil, 
mechanical, electrical, industrial, materials, energy and environmental engineering. 
 

Linear Regression - A medical related example presented by Montgomery and Runger (2011) 
involves, for example, the fitting of a linear regression model to the relationship between 
hypertension (blood pressure rise in mm of mercury, y) and the noise level (in decibels, x). The 
problem can be specified in PML as shown below in Display 5. 
 

 
Display 5  

 

 The x and y data are entered in an array format (only part of the x data are shown). The 
command "polyfit x, y, 1" specifies that a 1st degree polynomial (straight line) is sought. The 
solution report for the problem (see below) displays the numerical values of the model 
parameters a0 and a1, the statistical measures for the goodness of the fit: the correlation 
coefficient (R2), the confidence intervals and the variance). The solution report includes, also, a 
table containing the observed (measured) y values, the predicted y values (ycalc) and the 
residuals (Delta y  = y - ycalc).    
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Display 6 
 A quick analysis of the adequacy of the linear model to represent the data can be obtained 
by visual inspection of the plot of y and ycalc versus x in Figure 1. The data for such a plot 
containing the values of the dependent and independent variables can be exported to plotting 
utilities. We have been using of the Plotim application for this purpose. Plotim Free Graphs and 
Plotim Graph Maker are Android applications available from Google Play.  
 

  
Figure 1 

 

This plot demonstrates, indeed, that the blood pressure rise increases linearly with the 
increase of the noise level. 
 

Nonlinear Regression - The regression package of PLM can carry out linear, multiple linear, 
polynomial and nonlinear regressions. In the following example nonlinear regression is used to 
calculate the values of the reaction rate coefficient: ks and the equilibrium constant KCH4 for a 
catalytic reaction where data of the reaction rate (r, in g-mol/hr·gm*103) vs. the partial 
pressures of the reactants and products (PCH4, PH2o, PCO2 and PH2, in atm) are available. 
 

# Catalytic Reforming Reaction 

# Verified Final Values:  ks = 0.002784, KCH4 = 101.999 

# Ref.:Prob. 3.10 in  Cutlip and Shacham (2008) 

PCH4 = [0.06298, 0.03748, 0.05178, 0.04978, 0.04809, 0.03849, 0.03886, 0.0523, 0.05185, 0.06432, 0.09609] 

PH2O = [0.23818, 0.26315, 0.29557, 0.23239, 0.29491, 0.24171, 0.26048, 0.26286, 0.33529, 0.24787, 0.28457] 

PCO2 = [0.0042, 0.00467, 0.00542, 0.00177, 0.00655, 0.00184, 0.00381, 0.05719, 0.00718, 0.00509, 0.00652] 

PH2 = [0.01669, 0.01686, 0.02079, 0.07865, 0.02464, 0.06873, 0.0148, 0.01635, 0.0282, 0.02055, 0.02627] 

r = [0.00013717, 0.00015584, 0.00020028, 5.7E-05, 0.0002015, 7.887E-05, 0.00014983, 0.00015988, 
0.00026194, 0.00014426, 0.00020195] 

nlinfit r = ks*KCH4*(PCH4*PH2O^2-PCO2*PH2^4/5.051e-5)/(1+KCH4*PCH4)  

m(ks)=1 

m(KCH4)=1 
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Table 2 
 The Levenberg-Marquardt algorithm (see, for example, Seber and Wild, 2003) is used to 
find the optimal parameter values. The PML report (see below) shows correlation coefficient of 
R2 = 0.997 and confidence intervals which are much smaller in absolute values than the 
corresponding parameter values. These results indicate that that the nonlinear model and the 
calculated parameter values represent well the experimental data.   
 

 
 

Display 7 
Modeling Dynamic Behavior 
 

 Differential equations (in particular ordinary differential equations, ODE's) are used for 
modeling dynamics of processes. One such model, frequently used in ecological studies,  is 
the predator-prey model. The model determines the population over time of the two different 
species given parameters relating to the interaction between them. Consider for example the 
version presented in the website: http://demonstrations.wolfram.com/PredatorPreyModel/. 
In this example the predators are foxes (with population: F) and the preys are rabbits (with 
population: R). Rabbits, which live on vegetation, grow at a rate proportional to the current 
population: aR and die from encounters with Foxes given by -αRF. Foxes grow at a rate 
proportional to the encounters with rabbits, βRF, and die at a rate proportional to the current 
population, -cF.  The problem definition as entered into PML (including the parameter values 
and initial and final values of the variables) is the following.  
 

# Predator-Prey Model 

d(R)/d(t)=a*R-alpha*R*F # Balance on Rabbit Population 

R(0)=1 # Initial Condition of Rabbit Population 

d(F)/d(t)=beta*R*F-b*F # Balance on Fox Population 

F(0)=0.5 # Initial Condition of Fox Population 

#Current Parameter Values : 

a=1 

alpha=0.5 

b=0.75 

beta=0.25 

t(0)=0 # Initial Condition for Independent Variable 

t(f)=15 # Final Value for Independent Variable 

http://demonstrations.wolfram.com/PredatorPreyMode
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Table 3 
 The solution obtained is presented in Figure 2 that displays the variation of the rabbit and 
fox population vs. time. Observe that the population profiles of the rabbits (R) and the foxes (F) 
at the solution are cyclic and out of phase with each other.  
 

 
Figure 2 

 
 More challenging ODE related problems can be solved by PML, including stiff systems of 
ODEs, differential-algebraic systems of equations, partial differential equations (using the 
method of lines) and two point boundary value problems. 
 Consider for example a batch process of growth of biomass (B) from substrate (S), 
presented by Cutlip and Shacham (2008).  The model equations, the parameter values and the 
initial and final values of the variables are shown in the Polymath report shown in Display 8. 
For this problem one of the eigenvalues of the matrix of partial derivatives becomes very large 
(< 1.5*106) in absolute value for t > 16 requiring the use of a special stiff integration algorithm 
that is available in both PolyMath and PolyMathLite. 
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Display 8 
 The plots of the substrate and biomass amounts versus time, as obtained by PLM, are 
shown in Figure 3. Observe that slightly above t = 16 the substrate amount reaches zero value 
and starting this point both the substrate and biomass amounts remain constant. Keeping 
these values constant requires a properly tuned local truncation error control algorithm; 
otherwise, the substrate amount will obtain increasing negative values and the biomass 
amount may grow indefinitely.  

 
Figure 3 

Solve Complex Problems 
 
 Solution of systems of nonlinear algebraic equations (NLE) is considered a very 
challenging problem. PML provides several advanced tools for solving systems of NLEs. A 
simple example that requires solution of a system of NLEs is depicted in Figure 4. 
 

 
 

Figure 4 - Finding the intersection point of two curves. 
 
 This problem involves finding the intersection of the two curves y1 = sqrt(4-x2) and y2 = x3 
within the first quadrant. Noting that at the intersection y1 = y2 ≡ y the equations can be 
rewritten in implicit forms: f1(x,y) =x2 + y2 – 4 = 0 and f2(x,y) = y – x3 = 0. The solution satisfying 
these equations can be easily calculated by PLM. Initial estimates for the values x and y 
should be provided in the first quadrant, and the solution is found in the "Polymath Report" 
shown in Display 9. The results presented include the values of x and y at the intersection 
point, and the values f1(x,y) and f2(x,y) are very close to zero at the solution.  
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Display 9 

 
# Complex Chemical Equilibrium 

R = 1.9872 

sum = H2 + O2 + H2O + CO + CO2 + CH4 + C2H6 + C2H4 + C2H2 

f(lamda1) = 2 * CO2 + CO + 2 * O2 + H2O – 4 # Oxygen balance 
f(lamda2) = 4 * CH4 + 4 * C2H4 + 2 * C2H2 + 2 * H2 + 2 * H2O + 6 * C2H6 – 14 # Hydrogen 
balance 
f(lamda3) = CH4 + 2 * C2H4 + 2 * C2H2 + CO2 + CO + 2 * C2H6 – 2 # Carbon balance 

f(H2) = ln(H2 / sum) + 2 * lamda2 

f(H2O) = -46.03 / R + ln(H2O / sum) + lamda1 + 2 * lamda2 

f(CO) = -47.942 / R + ln(CO / sum) + lamda1 + lamda3 

f(CO2) = -94.61 / R + ln(CO2 / sum) + 2 * lamda1 + lamda3 

f(CH4) = 4.61 / R + ln(CH4 / sum) + 4 * lamda2 + lamda3 

f(C2H6) = 26.13 / R + ln(C2H6 / sum) + 6 * lamda2 + 2 * lamda3 

f(C2H4) = 28.249 / R + ln(C2H4 / sum) + 4 * lamda2 + 2 * lamda3 

f(C2H2) = C2H2 – exp(-(40.604 / R + 2 * lamda2 + 2 * lamda3)) * sum 

f(O2) = O2 – exp(-2 * lamda1) * sum 

H2(0) = 5.992 

O2(0) = 0.0001 > 0 

H2O(0) = 1 

CO(0) = 1 

CH4(0) = 0.001 > 0 

C2H4(0) = 0.001 > 0 

C2H2(0) = 0.001 > 0 

CO2(0) = 0.993 

C2H6(0) = 0.001 > 0 

lamda1(0) = 10 

lamda2(0) = 10 

lamda3(0) = 10 

Table 4 
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 The NLE solver program of PML is able to solve extremely complex and challenging 
problems belonging to NLE system category. Consider for example the "Complex Chemical 
Equilibrium" (Problem 4.5 in Cutlip and Shacham, 2008) where the system of equations is 
shown in Table 4. In this system there are twelve implicit equations with the same number of 
unknowns. 
 A major challenge in this problem is that some of the variables are constrained to strictly 
positive values as their logarithm (which is undefined for values ≤ 0) needs to be calculated. 
One of the NLE solver algorithms available in PML (the constrained algorithm of Shacham, 
1984) is specifically aimed toward solving this kind of “constrained” systems of NLEs. The PML 
report in Display 10 shows that very accurate solution has been obtained where concentrations 
of some of the variables in the nonlinear equations (O2, C2H2, C2H4 and C2H6) are indeed very 
close to zero.   
 

 
 

Display 10 
Conclusions 
   
  An application for numerical solution of problems (PolyMathLite, PML), for Android-based 
smartphones, tablets and computers, has been developed. This paper has demonstrated that 
this app is able to efficiently utilize numerical methods to: 
  

  solve problems represented by sets of explicit linear and nonlinear equations 

  solve systems of nonlinear algebraic equations (which may also include constraints on 
selected variables) 

  identify the parameter values and calculate statistical metrics for linear, multiple linear, 
polynomial, and general nonlinear regression problems 
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  solve stiff and non-stiff systems of ordinary differential equations 

  provide solution results in numerical, tabular and graphical formats that allow for clear 
presentation and rapid interpretation  

   
  The PolyMathLite application has been applied to problems of various complexity levels.  
Use of the software can be introduced starting with problems that may be appropriate for users 
with only high school education background at the AP levels in the sciences, math and 
introduction to engineering.  More complex problems can be easily solved by students in the 
STEM subject areas (science, technology, engineering, and mathematics) in technical 
programs, community colleges, and four-year colleges and universities.  Available PolyMath 
PC software that builds upon PML enables the solutions to very complex problems found in 
advanced coursework and in graduate scientific and engineering studies at the MS or PhD 
levels.   Practicing engineers and scientists can use the PolyMath professional software for 
complex problem solving.  
  The availability of the PML app on smartphones, tablets and computers introduces users 
to numerical problem solving that is widely used in the real world.  Interest in the application of 
mathematics should be enhanced and this hopefully may be encouraging to students to enter 
the STEM fields of study.  Problem solving on readily-available hand-held devices will reduce 
the need to be tied to a computer for solving problems involving numerical computation.  There 
are many future educational possibilities and workplace utilizations of the capabilities that will 
be enabled by this type of calculational tool that can be as close as a smartphone.  
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