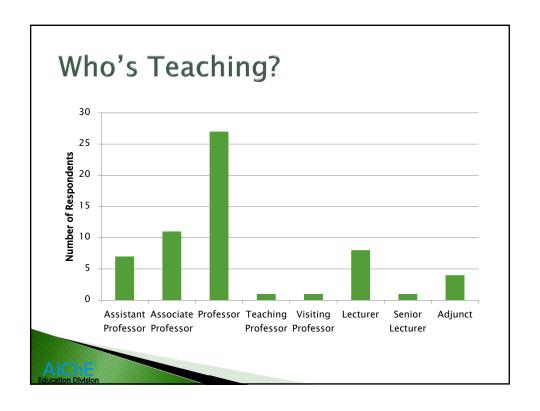
Capstone Design Course Survey Overview

Selected Results from the 2012 AIChE Education Division Survey
David Silverstein, University of Kentucky
Margot Vigeant, Bucknell University
Lisa Bullard, North Carolina State University
Warren Seider, University of Pennsylvania

AIChE National Meeting November 4, 2013

Survey Background

- AIChE Education Special Projects Committee conducted surveys from 1957–1993
 - $^\circ$ Examined demographics/statistics
 - Probed for innovative and effective teaching methods
- Topics were curricular and pedagogical
- Surveys resumed in 2009 following that model
 - Freshman Introduction (2009), Kinetics and Reactor Design (2010), Material & Energy Balances (2011)

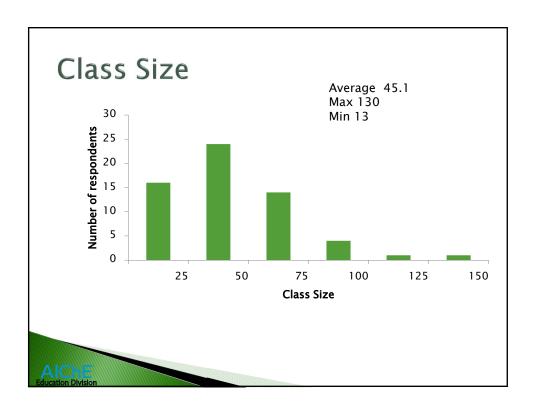

Methodology

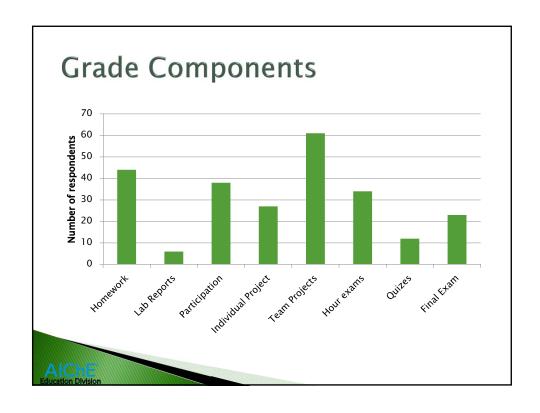
- Implemented via the Web using LimeSurvey, an open source survey software package
- Questions designed to generate
 - Statistical demographic data
 - Examples of effective teaching methods in use
- Department chairs asked to request appropriate faculty members to respond
- Faculty members teaching the course in 2011-2012 based on public records asked to respond

AIChE*

Summary

- ▶ 158 schools in the U.S. invited to respond
 - · Institutions in Canada invited
 - Selected institutions internationally invited
 - 69 usable responses
 - · 5 institutions had multiple responders
- ▶ 64 institutions represented
 - 58 in US
 - 6 international
 - 37% US Institutional Response Rate
 - · 42% in 2011
 - · 38% in 2010

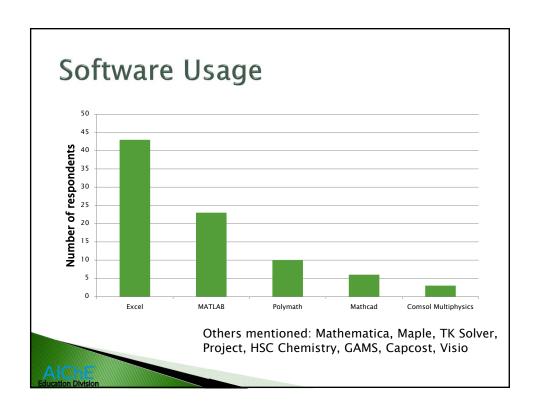

Industrial Role

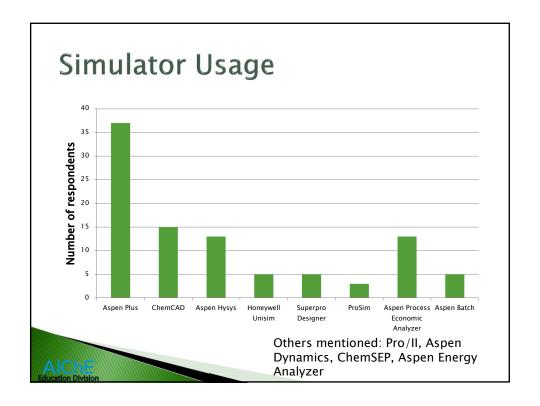

- ▶ 68 instructors responded
 - 15 indicated no industrial experience (22%)
 - Average industrial experience
 - 9.0 y amongst all instructors
 - 11.6 y amongst those with experience ($\sigma = 11.2$)
- → 36 indicated use of industrial partners or adjuncts in one of several roles:
 - Guest lectures
 - Advisors/mentors
 - Consultants
 - Evaluators
 - Problem sources
 - Webinars

Quantity of Instruction

- Number of courses
 - 30 institutions had 1 course
 - 28 had 2 courses
 - 4 had 3 courses
 - 1 reported 4 courses
- ▶ Hours/wk on task
 - 2.5 on lecture
 - 1.8 on simulation/problem laboratory
 - 0.1 on experimental laboratory
 - 4.1 hours total
- ▶ 1.8 exams given on average by the 47 (of 68) instructors who give exams

Other Assessments


- Presentations
- ▶ Teamwork
- Safety training
- Peer review
- Status reports
- ▶ Journals
- Mock FE Exam


AIChE[®]

Beyond the Instructor

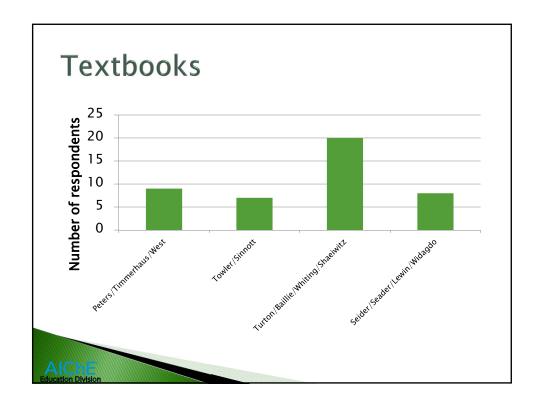
- Average of 3.5% of all contact with TAs
 - 15 instructors reported TA role as lecturer, recitation leader, or oral report evaluator
- 36 respondents indicated use of industrial partners or adjuncts
 - Guest lecturers
 - Advisors/Mentors
 - Consultants
 - Evaluators
 - Problem sources
 - Webinars

AIChE'

Computing Facilities

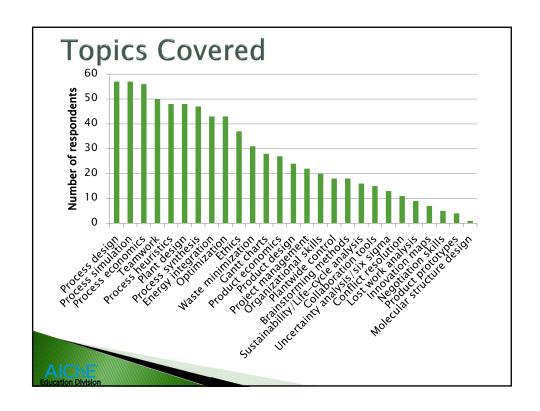
- Who maintains computing laboratories:
 - 42 maintained at the department level
 - 30 maintained at the college level
 - $_{\circ}$ 18 maintained at the university level
 - oldid not maintain a computing lab
- ▶ Platform
 - 94% Windows
 - 4% MacOS
 - 2% Linux

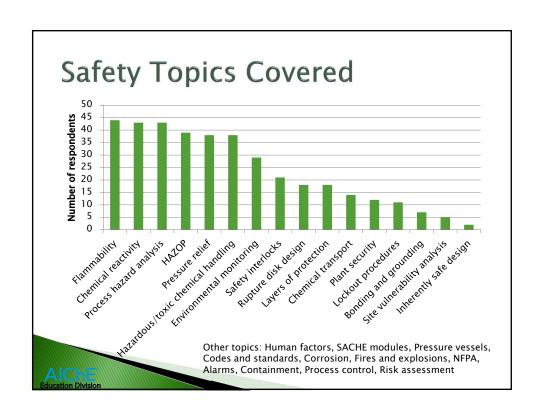
AIChE'

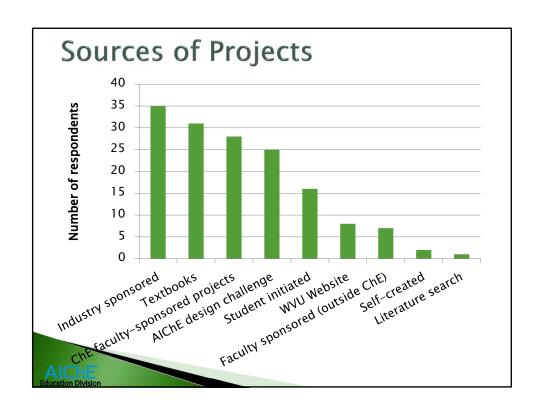

Online integration

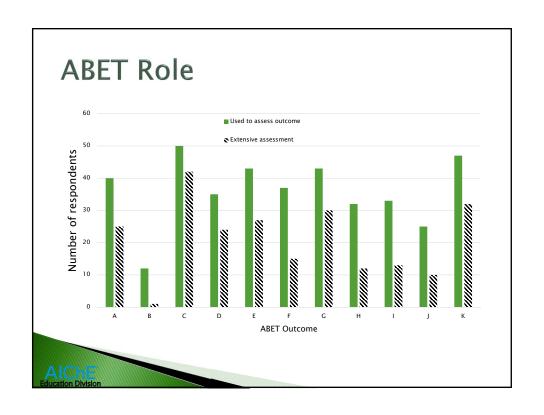
- Extensive use of CMS (Blackboard, Moodle, etc)
- SACHE materials
- CACHE materials
- Use of online resources for research

AIChE'


Textbooks


- Biegler, Grossmann & Westerberg, Systematic Methods of Process Design, Prentice Hall, 1997
- Cussler & Moggridge, Chemical Product Design, Cambridge, 2011
- Luyben, Distillation Design and Control using Aspen Simulation, AIChE/Wiley, 2006
- Peters, Timmerhaus, & West, Plant Design and Economics for Chemical Engineers, McGraw Hill, 2002
- Seider, Seader, Lewin, & Widagdo, Product and Process Design Principles, Wiley, 2008
- Towler & Sinnott, Chemical Engineering Design, Butterworth– Heinemann, 2012
- Turton, Baillie, Whiting, & Shaeiwitz, Analysis, Synthesis, and Design of Chemical Processes, Prentice Hall, 2012
- Ulrich, Product Design and Development, McGraw Hill, 2011




Project Assignments

- ▶ Team Projects: Average team size 4.3
 - Skewed by several large (max 26) teams
 - · Without large teams, average is 3.5
 - Minimum team size 1 (?)
- Average of 11.8 concurrent (parallel) projects
 - 25 respondents indicated they were all unique projects
- Students participated in an average 2 total projects during their design sequence

Prime Goals

- Critical thinking, problem-solving
- Demonstrate competency
- Integrate concepts throughout the curriculum
- Full system design with control, economics, safety

AIChE'

Faculty Role

- > Coach, mentor, team leader, guide, facilitator
- Enabler, trouble-shooter, motivator, consultant
- Teacher, instructor, deliver-er of content, assurer of product quality

Challenges

- Class size
- Students are: ignorant, lazy, unable to motivate a semester-long project, unable to handle open-ended problems
- Students don't know as much about (x) as they should: fundamental ChemE, literature searching, team-work
- Developing good projects
- Faculty need to: have experience in plant design, be engaged, spend time grading written work, not flee the course

AIChE'

Future Work

- Journal article extending the fundamental descriptive responses
 - Multidisciplinary elements
 - Entrepreneurial elements
 - Historical comparisons
 - International breakout
 - AIChE Session Discussion
- This year's topic is ChE Electives
 - Survey available at http://survey.edudiv.org
 - Led by Margot Vigeant with Ben Davis
- Coming next year... Transport Phenomena!

Acknowledgments

- All of the instructors who completed the survey
- All of the department chairs who passed on the request
- CACHE Corporation (cache.org)
- University of Kentucky ECS
- www.limesurvey.org
- Contact David Silverstein (<u>David.Silverstein@uky.edu</u>) for more information