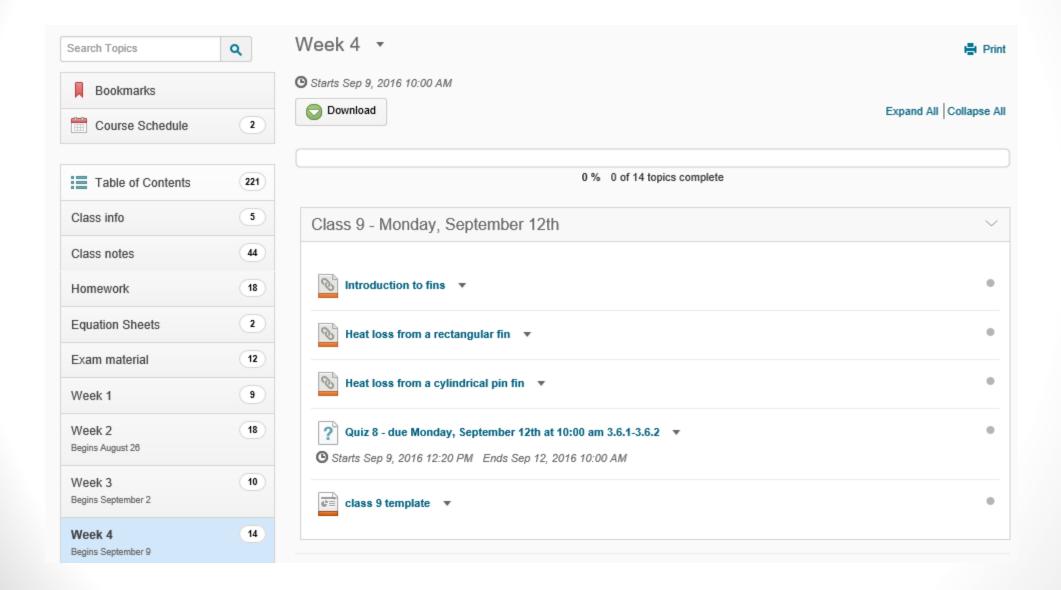
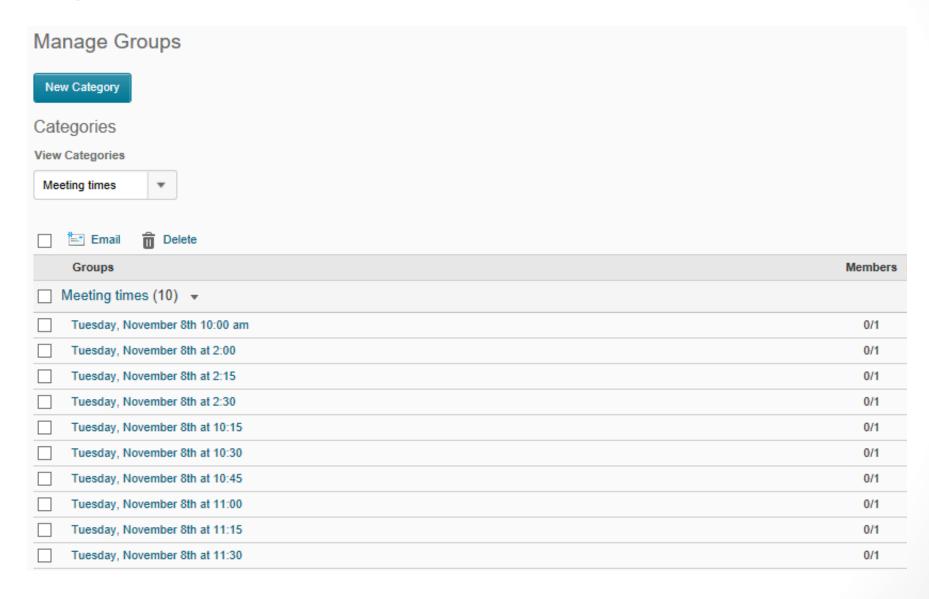
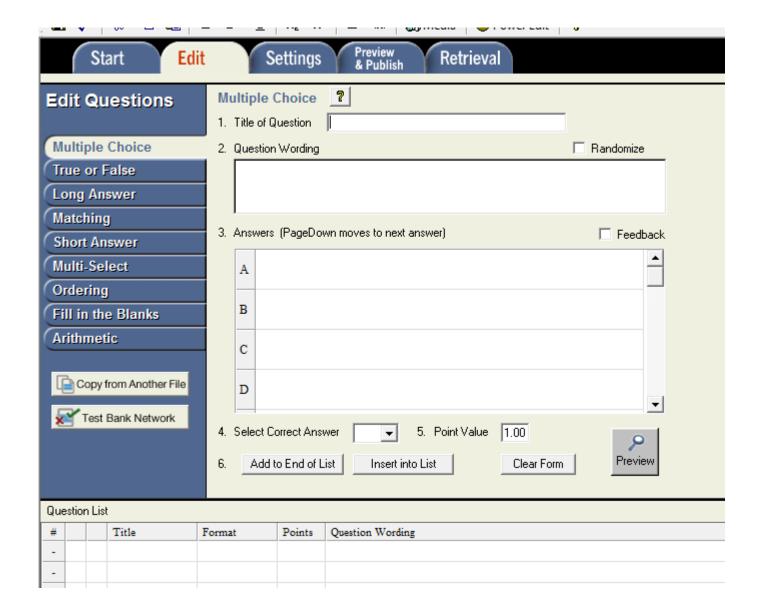

Leveraging your LMS to support large classes

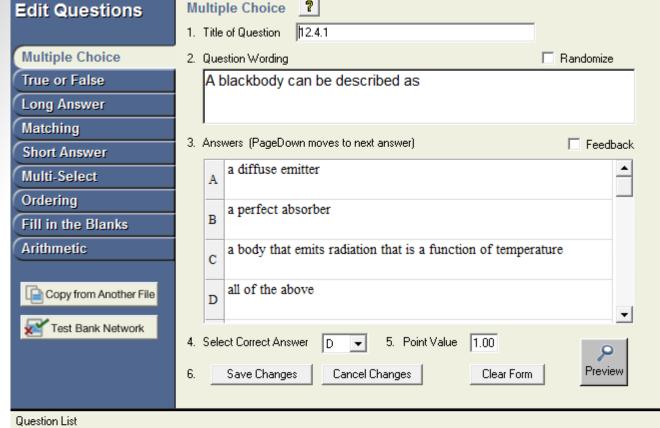

Why?

Variety of ways to use LMS

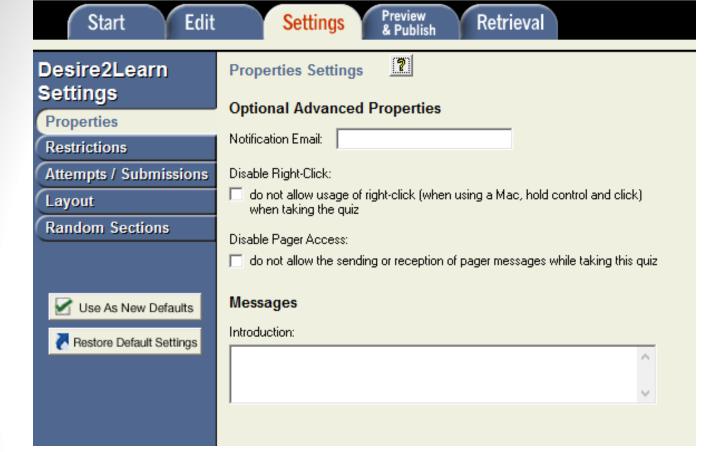
- Usual
 - Gradebook
 - Post content
- Beyond
 - Creating a flipped classroom
 - Forming groups
 - On-line homework and quizzes
 - DropBox for homework
 - On-line office hours
 - Reports


Creating a flipped classroom


Forming groups


Homework Groups (52) ▼	
Group 1	4/4
Group 2	3/4
Group 3	3/4
Group 4	4/4
Group 5	3/4
Group 6	4/4
Group 7	4/4
Group 8	4/4
Group 9	4/4
Group 10	4/4
Group 11	4/4
Group 12	4/4
Group 13	4/4
Group 14	4/4
Group 15	4/4

Meeting with students


Making on-line assignments easier

Que	estion	n List	t			
#			Title	Format	Points	Question Wording
1	٩	\cong	12.4.1	Multiple Choice	1.0	A blackbody can be described as
2	٩	\cong	12.4.2	Multiple Choice	1.0	Which of the following is not a characteristic of an isothermal blace
3	٩	\cong	12.4.3	Multiple Choice	1.0	According to Figure 12.12
4	٩	\cong	12.4.4	Multiple Choice	1.0	According to Wien's Law, the maximum spectral emissive power
-						
_						

A blackbody can be described as
1) a diffuse emitter
2) a perfect absorber
3) a body that emits radiation that is a function of temperature
4) all of the above
Answer Values
0.0% 1)
0.0% 2)
0.0% 3)
100.0% 4)

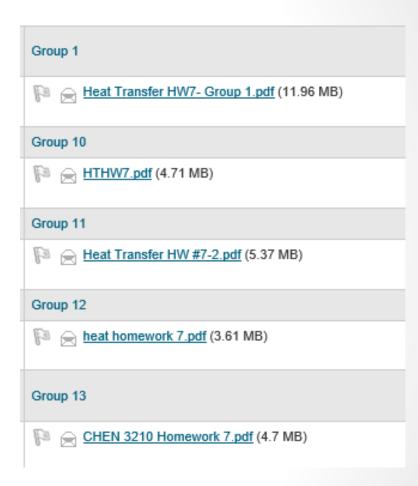
Restrictions Settings ?				
Availability				
Status: Active 🔻				
Dates: MM/DD/YYYY HH:MM				
✓ Has Start Date 11/18/2016 10:00				
▼ Has End Date 11/25/2016 10:00				
Optional Advanced Restrictions				
Password: (leave blank to disable)				
IP Restriction: (leave blank or 0 to allow all addresses)				
Timing				
Time Limit: 60 minutes ▼ enforced ▼ show clock				
Grace Period: 5 minutes before flagged as late				
Late Submissions (only applies if time limit is enforced)				
C Allow normal submission				
C Use Late Limit of minutes				
Auto-Submit Attempt				

Quiz List

Current Quizzes	Attempts
Quiz 32 - due Friday, November 11th at 10:00 am, 12.4 ▼	0.11
Nov 4, 2016 10:00 AM - Nov 11, 2016 10:00 AM	0 / 1
Future Quizzes	Attempts
Quiz 33: Due Monday, November 14th at 10:00 am : 12.5,6 ▼	0.11
Nov 11, 2016 10:00 AM - Nov 14, 2016 10:00 AM	0 / 1
Quiz 34: Due Wednesday, Nov. 30 at 10:00 AM: 13.1-13.2 ▼	
Nov 25, 2016 10:00 AM - Nov 30, 2016 10:00 AM	0 / 1
Quiz 55 ▼	
Nov 18, 2016 10:00 AM - Nov 25, 2016 10:00 AM	0/1

Grading homework

Homework 10 – due Tuesday, November 15th at 10:00 am (65 pts)


Properties

11.42a	(10 pts)	<u>CRC</u> = 4181 J/kg-K		
11.44	(10 pts)	CRC = 4179 J/kg-K	T _{sat} = 355 K	h _{fg} = 2304 kJ/kg
11.49a	(15 pts)	c _{rw} = 4182 J/kg-K	k _w = 0.643 W-n	$\rho_1 = 998.1 \text{ kg/m}^3$
		μ = 548 * 10 $^{\text{-}6}$ N-s/m $^{\text{2}}$	Pr = 3.56	$k_b = 137 \text{ W/m-K}$
12.16	(15 pts)			
12.24	(5 pts)			
12.29a	(10 pts)			

Create Rubric

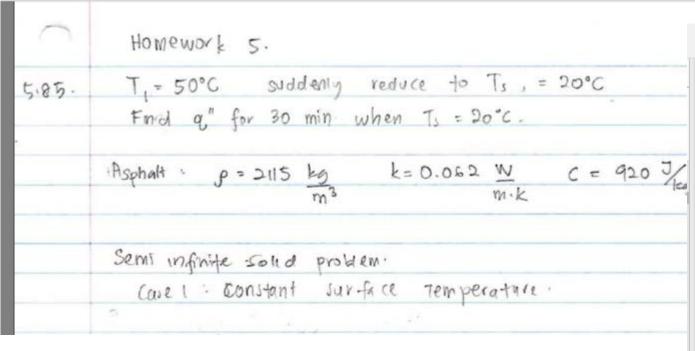
Homework 8 Problems	Points	
9.25	10 points	
9.27	20 points	
9.44	25 points	
9.61	10 points	
9.72	20 points	
9.83	15 points	
Overall Score	Level 1 0 or more	

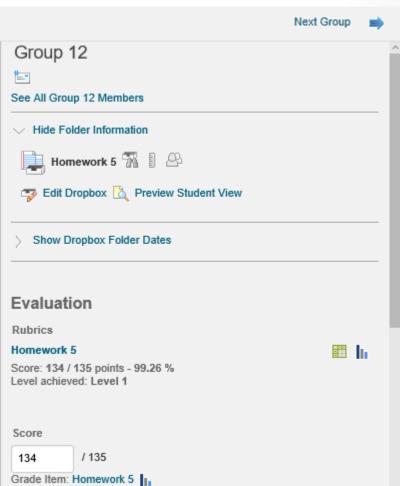
Students submit to DropBox

-	1) • Kplastic = 0.15 W , Di= 0.15 m , Do= 0.17 x
_	- Trai=29°C
-	• AV= 0.025 m3/s
_	* Tmo = 21°C
_	· L = 399
Tio	Tsi Tsi Tair
	Tmo = e (Tmcp Reat)
	-Tm1
Rtot	
1.101	- L [holl Do 21K hi TDi]
-	= hi=99 = Re = 4mi =

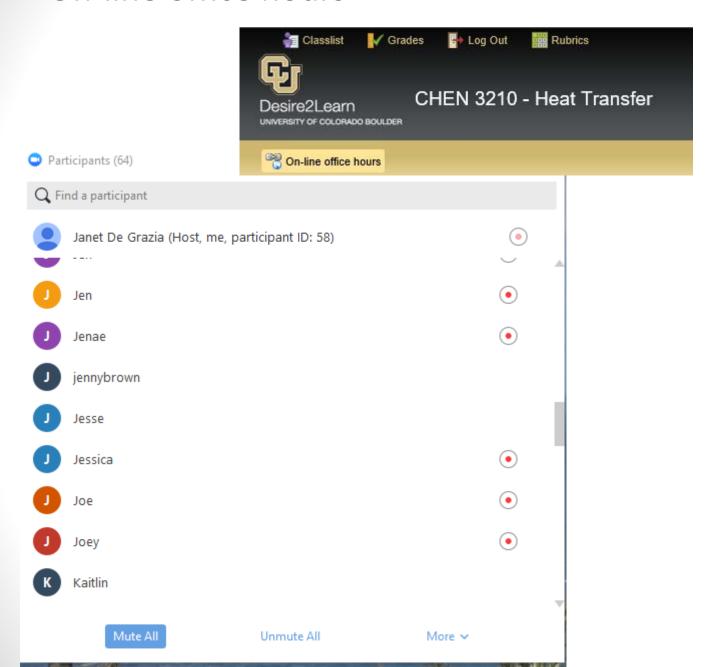
Homework 7 Problems	Points	Score and Feedback
8.27	10 points	10 points
8.31	15 points	15 points
8.33	15 points	4 points Missing Reynolds numer and Nusselt number calculations, h value, and correct length.
8.37	20 points	20 points
8.62	15 points	25 points
8.74	15 points	15 points
8.86	20 points	20 points
8.98	10 points	10 points
Overall Score	Level 1 0 or more	Score and Feedback
	•	109 points

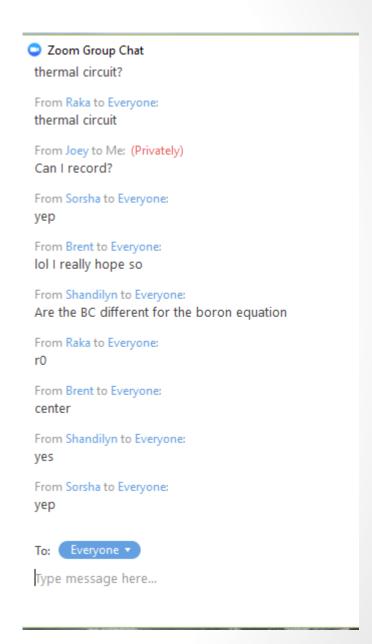
Save & Record


Save


Cancel

<< Back to User Submissions




→ Homework5_Group12.pdf

On-line office hours

1:18 PM

10.32 Consider a horizontal, D=1-mm-diameter platinum wire suspended in saturated water at atmospheric pressure. The wire is heated by an electrical current. Determine the heat flux from the wire at the instant when the surface of the wire reaches its melting point. Determine the corresponding centerline temperature of the wire. Due to oxidation at very high temperature, the wire emissivity is $\varepsilon=0.80$ when it burns out. The water vapor properties at the film temperature of 1209 K are $\rho_v=0.189\,\mathrm{kg/m^3},\ c_{p,v}=2404\,\mathrm{J/kg\cdot K},\ \nu_v=231\times10^{-6}\,\mathrm{m^2/s},\ k_v=0.113\,\mathrm{W/m\cdot K}.$

Ts = melting pt of PF

9"s=h(Ts-Tsat) DTe

Screen clipping taken: 10/28/2016 1:19 PM

Table (3) - T(r) - at r=0

Egen = Cont gttD2 = 95TTD

Introduction to fins 🥒	2	0:00:06	Oct 4, 2016 2:44 PM
Heat loss from a rectangular fin ✓	2	0:03:59	Oct 4, 2016 7:39 PM
Heat loss from a cylindrical pin fin ✓	1	0:19:36	Oct 4, 2016 3:34 PM
Quiz 8 - due Monday, September 12th at 10:00 am 3.6.1-3.6.4	-	-	-
class 9 template	-	-	-
Class 10 - Wednesday, September 14th	-	-	-
Rectangular fin array ✓	2	0:22:10	Oct 4, 2016 7:52 PM
Efficiency for an array of fins ✓	1	0:09:58	Oct 5, 2016 5:13 PM
Quiz 9 - Due Wednesday, September 14th at 10:00 am 3.65	-	-	-
class 10 template	-	-	-
Class 11 - Friday, September 16th	-	-	-
Introduction to lumped capacitance 🥒	2	0:13:12	Oct 5, 2016 5:23 PN
Lumped capacitance example ✓	1	0:09:56	Sep 18, 2016 4:49 P
Methods for solving transient heat transfer problems	1	0:03:41	Oct 5, 2016 5:58 PM
class 11 - lumped capacitance template	-	-	-
Quiz 10 - due Friday, September 16th at 10:00 am 5.1-3	-	-	-
/eek 5	-	-	-
Class 12 - Monday, September 19th	-	-	-
Introduction to transient convection	-	-	-
One-term approximation	-	-	-
Plane wall with convection example	-	-	-
class 12 template	-	-	-
Quiz 11 - due September 19th at 10:00 am Ch. 5.4-6	-	-	-
Class 13 - Wednesday, September 21st	-	-	-
Analytical solution for a transient problem	-	-	-
Total energy from a sphere	-	-	-
Transient conduction in a semi-infinite medium	1	0:09:31	Oct 5, 2016 6:09 PM
Semi-infinite solid ✓	1	0:02:43	Oct 5, 2016 6:19 PM
class 13 template	-	-	-

Conclusions

- Large classes can be challenging to manage
- Using the resources of a learning management system can save time and stress
- Adding available technologies to your system can make it even more efficient
- This is only the part of how you can make larger classes easier to manage – talk to me about other techniques I've used
- And what does this have to do with John?