

Perspectives on Undergraduate Process Control Education

Nov 11, 2015

AIChE Session 612

Babatunde A. Ogunnaike

Outline

- Introduction
 - What is "Process Control"
 - Why "Undergraduate Process Control"
- Current State
 - What and Why
 - How
- Considerations for the 21st Century
- Conclusions

introduction

What is Process Control

Engineering Discipline

- Deals with architectures, mechanisms and algorithms for maintaining the output of a process within a desired range.
- Belongs to the family of topics collectively known as Automation/Control & Systems Theory; shared with other engineering disciplines (ME, EE, Aerospace, etc.)

Components

- Research; Applications;
- Education: Undergraduate and Graduate (focus on undergraduate education)

Historical Perspectives

18th and 19th Century

- Dominant Science: Physics
- Technological Innovations and the role of Automation/Control and Systems Theory

20th Century

- Dominant Science: Chemistry
- Technological Innovations and the role of Automation/Control and Systems Theory

21st Century

- Dominant Science: Biology (incl. Information Sciences)
- Technological Innovations and …. ?

Historical Perspectives

Centrifugal Flyball Governor

- Invented in 1788 by James Watt to control his steam engine
- Regulates the admission of steam into the cylinder(s).

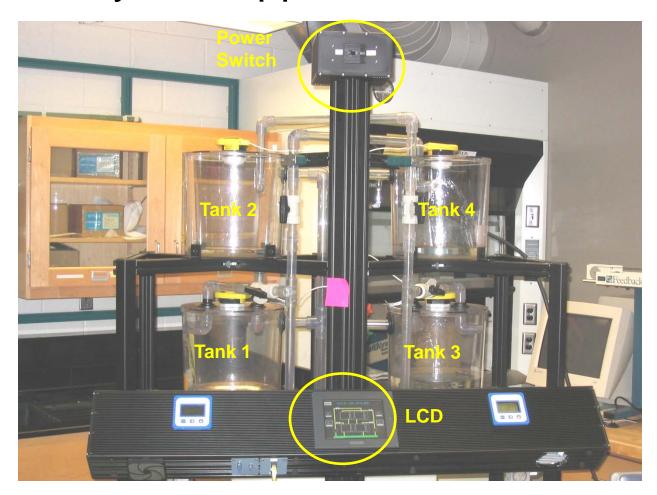
Why Teach Process Control

- The only place where students are exposed to dynamics.
 - Other course in the Chem E curriculum deal with steady state analysis and design
- Remains an important aspect of industrial practice
 - No industrial process can operate successfully without an effective control room
- Principles applicable to other non-Chem E disciplines
 - Finance & Economics
 - Biology and Medicine

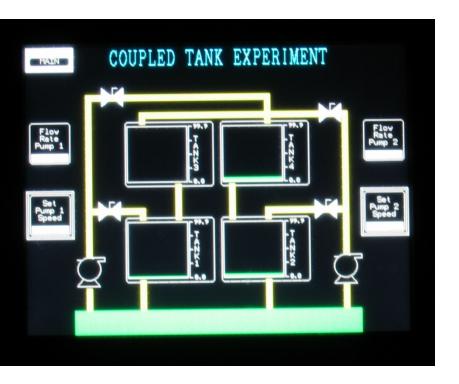
current state

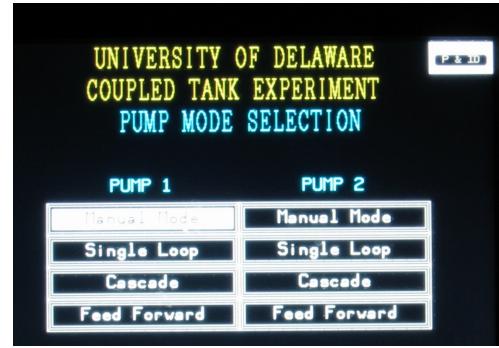
What

- Control course eliminated in some schools
- Not required in others
 - even @ MIT with Braatz and Stephanopoulos!
- When still required, often taught by "non-experts"


Why

- Alarming number of Chem E departments have only one "Systems" faculty
- Not enough new faculty with interest and expertise in "Systems" being produced
- Research Funding
- Etc.


How (we currently teach the course)


- Mostly (but not always) too theoretical
- Too much emphasis on less relevant material
- Not as connected to industrial practice
- But... some institutions get it right
 - Right mix of topics (adaptable and evolving)
 - Right mix of theory and experiments
 - Appropriate pedagogic tools
 - Appropriate balance in problem sets and exams

Physical Apparatus @ UD

Control System Screens

considerations for the 21st century

Driving Forces for 21st Century

Grand Challenges

- What are the grand challenges of the day?
- What is driving these challenges?

Dominant Science

- What is the dominant science driving technological solutions of the day?
- What is the role of Process Control/Systems Analysis in enabling these solutions?

Technology for Pedagogy

— How should pedagogical technology affect the way we teach Process Control in this century?

Curriculum Content: What it should achieve

(Prepare students for the next stage (industry/grad school))

- Understand the need for control; economic implications
- Understand principles of "Systems Analysis"
- Understand applications of the principles to various traditional and non-traditional problems
- Can acquire and analyze data in the context of systems understanding, and the role of uncertainty
- Can design, implement, and analyze performance of control systems (single unit/plant-wide)
- Can extrapolate basic knowledge to more complex, previously unexplored circumstances

Implications for Topics to Cover

- Return to basic, universal principles
 - ♦ Dynamics; Modeling; Control
- Dynamic Analysis (implications for controller design)
- Modeling and Identification
- Controller Design
 - **♦** Basic Principles of Feedback
 - ♦Other configurations: what, why and how
- Non-traditional examples (Finance; Biomedical—intrinsic and extrinsic)
- Process Data Acquisition and Analysis

- Examples of Topics/Applications to Consider
 - Biological Control Systems
 - **♦Intrinsic vs Extrinsic**
 - ♦ Pathology and Treatment
 - Financial Engineering
 - Micro-manufacturing
 - SCADAS (Supervisory Control and Data Acquisition Systems)
 - **♦**Structure/Configuration
 - **♦**Cybersecurity

Examples of Non-Traditional Applications

Calcium Homeostasis

- Intrinsic
- Illustrates a control engineering perspective of a biological system
- Provides control engineering perspective of pathology and diagnosis

Hemostasis: Platelet Count Control

- Extrinsic
- Illustrates how traditional control engineering can be used for the design of an effective control system for medical applications

Curriculum Delivery

- Use Technology (simulations software, etc.); augment with experimentation
- Use Case Studies (Traditional and non-traditional)
- Insert industrial guest lecturers where possible
- Use novel pedagogical tools
 - **♦PBL**
 - ♦ Flipped Classroom
 - ♦UD Second mid-term exam format
- Tutorial sessions

conclusion

Conclusion

Historically

- Process Control/Systems Analysis enabled technological advances of past centuries;
- No reason it cannot do the same in this century

Manpower Development

Work with industry and funding agencies to produce new generation faculty

Curriculum Content & Delivery

Adapt appropriately to be relevant

THANK YOU!

