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     Introduction 
 
     There have been a number of studies that have solved Burgers’ equation [1] by the 
     Method of Lines[2,3,4,5,6].   None (have been found), however, that have utilized VBA  
     and presented the results in a  spreadsheet  format.  
 
     A solution to Burgers’ equation programmed in VBA is the topic of this paper.  A fourth 
     order Runge-Kutta  differential  equation routine  in VBA is included. 
 
    Appendix I is a complete listing of the VBA program.  Appendix II is the   author’s method 
    of converting the VBA program file (*.bas file) into a  Word file (*.xlsm file ) so that the 
    VBA program can be listed as part a Word file. 
 

     Burgers’ Equation in One Dimension 
 
     Burgers’ equation provides a simplified model of fluid dynamics combining nonlinear  
     advection and linear diffusion. In one dimension.  it is the nonlinear partial differential 
     equation  
      
             ∂u/∂t + u ∂u/∂x = 𝜇 ∂2/∂x2                                                                                                (1)                        
             or 
             ut + u ux  = μ uxx 

 
      There are a number of solutions [7] that have been shown to satisfy Eq. (1). 
      One of the simplest is Eq. (2) 
 
      𝑢(𝑡, 𝑥)  = 1/(1 + 𝑒𝑥𝑝((2𝑥 − 𝑡)/4𝜇))                                                                                  (2)                          
 
       The parameter μ (which can be interpreted as viscosity [1] )  controls the balance between 
       convection and diffusion. For x between 0 and 1 and μ = 1,  Table 1 gives the exact solution to 
       Eq. (2) at various values of t.   When t → ∞ all entries go to 1. 
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                                                    Table 1.  Solution of  Eq. (2),   0≤ 𝑥 ≤ 1  ,  μ = 1 

 

     The Method Lines 
 
      To apply the Method of Lines (MOL) to the solution of Eq.(1), the partial derivatives in the   
       x direction are approximated numerically (where h = 0.1 is the mesh size) 

                     (ux)i   =   ( ui+1  -  ui-1)/ 2h                                                                                                       (3) 
 
                   (uxx)i   =    (ui+1 – 2 ui  + ui-1)/h2                                                                                                (4) 
      
     Substituting (3) and (4) into equation (1) 
 
                 dui /dt   +   ui  ( (ui+1 –  ui-1)/2h)    - μ ( ( ui+1 – 2 ui  +ui-1)/h2) = 0                                  (5) 
                                 i = 1….9 
 
        Boundary values, U0 and U10 , are supplied from Eq. (2).     
                  
       Table 2 Is the VBA Code for the nine differential equations (Eq. (5)) which are integrated at each  
       time step. The integration is carried out in VBA  procedure integ. 
         

  
   

          

  

 Exact 
Solution  
μ=1 

          

 
time                           

 
x ==== 

        

 
sec 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

 
0.00 0.5000 0.4875 0.4750 0.4626 0.4502 0.4378 0.4256 0.4134 0.4013 0.3894 0.3775 

 
0.20 0.5125 0.5000 0.4875 0.4750 0.4626 0.4502 0.4378 0.4256 0.4134 0.4013 0.3894 

 
0.40 0.5250 0.5125 0.5000 0.4875 0.4750 0.4626 0.4502 0.4378 0.4256 0.4134 0.4013 

 
0.60 0.5374 0.5250 0.5125 0.5000 0.4875 0.4750 0.4626 0.4502 0.4378 0.4256 0.4134 

 
0.80 0.5498 0.5374 0.5250 0.5125 0.5000 0.4875 0.4750 0.4626 0.4502 0.4378 0.4256 

 
1.00 0.5622 0.5498 0.5374 0.5250 0.5125 0.5000 0.4875 0.4750 0.4626 0.4502 0.4378 

 
1.20 0.5744 0.5622 0.5498 0.5374 0.5250 0.5125 0.5000 0.4875 0.4750 0.4626 0.4502 

 
1.40 0.5866 0.5744 0.5622 0.5498 0.5374 0.5250 0.5125 0.5000 0.4875 0.4750 0.4626 

 
1.60 0.5987 0.5866 0.5744 0.5622 0.5498 0.5374 0.5250 0.5125 0.5000 0.4875 0.4750 

 
1.80 0.6106 0.5987 0.5866 0.5744 0.5622 0.5498 0.5374 0.5250 0.5125 0.5000 0.4875 

 
2.00 0.6225 0.6106 0.5987 0.5866 0.5744 0.5622 0.5498 0.5374 0.5250 0.5125 0.5000 

 
2.20 0.6341 0.6225 0.6106 0.5987 0.5866 0.5744 0.5622 0.5498 0.5374 0.5250 0.5125 

 
2.40 0.6457 0.6341 0.6225 0.6106 0.5987 0.5866 0.5744 0.5622 0.5498 0.5374 0.5250 

 
2.60 0.6570 0.6457 0.6341 0.6225 0.6106 0.5987 0.5866 0.5744 0.5622 0.5498 0.5374 

 
2.80 0.6682 0.6570 0.6457 0.6341 0.6225 0.6106 0.5987 0.5866 0.5744 0.5622 0.5498 

 
3.00 0.6792 0.6682 0.6570 0.6457 0.6341 0.6225 0.6106 0.5987 0.5866 0.5744 0.5622 
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************************************************************************************* 
                      U0 and U10 are  boundary values from Eq. (2)  
 
                                     U0     =     1/(1 +   Exp ((-t)/(4*mu))      
                                     U10  =     1/ (1+   Exp((2-t)/(4*mu)) 
 
       fff(1)  = -U1 * (U2-U0)/(2*h) + mu *(U2-2*U1+U0)/(h*h) 
       fff(2)  = -U2 * (U3-U1)/(2*h) + mu *(U3-2*U2+U1)/(h*h) 
       fff(3)  = -U3 * (U4-U2)/(2*h) + mu *(U4-2*U3+U2)/(h*h) 
       fff(4)  = -U4 * (U5-U3)/(2*h) + mu *(U5-2*U4+U3)/(h*h) 
       fff(5)  = -U5 * (U6-U4)/(2*h) + mu *(U6-2*U5+U4)/(h*h) 
       fff(6)  = -U6 * (U7-U5)/(2*h) + mu *(U7-2*U6+U5)/(h*h) 
       fff(7)  = -U7 * (U8-U6)/(2*h) + mu *(U8-2*U7+U6)/(h*h) 
       fff(8)  = -U8 * (U9-U7)/(2*h) + mu *(U9-2*U8+U7)/(h*h) 
       fff(9)  = -U9 * (U10-U8)/(2*h) + mu *(U10-2*U9+U8)/(h*h) 
 
     U1..U9  are the current values of the  dependent variable,   fff(1)..fff(9) (dui/dt) are 
     the Right hand sides of the nine differential  equations, U0 and U10 are the boundary 
     values from Eq.(2) and  t is time 
 
               Table 2.  VBA  Code in integ for Integration of the  nine differential equations 
   
******************************************************************* 
 The Spreadsheet Implementation 

 
Table 3 is the spreadsheet for the Method of Lines solution. In order to compare the Method of Lines 
results with Table 1 (exact solution) the boundary values at time = 0 and the boundary values at x = 0 
and x = 1 are taken from Eq. (2). Column A is the time. 
 

******************************************************************* 
Burgers '  Equation One Dimensional 

             A           B         C         D          E         F         G        H           I          J 

   Time 0.10000 0.2000 0.3000 0.40000 0.5000 0.6000 0.70000 0.8000 0.9000 

0.000000 0.487503 0.475021 0.462570 0.450166 0.437823 0.425557 0.413382 0.401312 0.389361 

0.005000 0.487815 0.475332 0.462881 0.450475 0.438131 0.425863 0.413686 0.401613 0.389658 

0.010000 0.488127 0.475644 0.463192 0.450785 0.438439 0.426169 0.413989 0.401913 0.389955 

0.015000 0.488439 0.475956 0.463502 0.451094 0.438747 0.426474 0.414292 0.402213 0.390253 

0.020000 0.488752 0.476268 0.463813 0.451404 0.439054 0.426780 0.414595 0.402514 0.390550 

0.025000 0.489064 0.476579 0.464124 0.451713 0.439362 0.427086 0.414899 0.402815 0.390848 

 
         Table 3. The Spreadsheet utilizing the Method of Lines (Full sheet is 3138 rows at  time 15.17) 

******************************************************************* 
 
Table 4 is a list of parameters used by procedure integ for the integration of the nine equations. 
 
The value of delt (0.005) was selected by trial to achieve stability and accuracy. 



4 
 

 

 

 
Parameters for procedure Integ 
 
               N                  =   9             (Number of Equations) 
               delt              =   0.005     (Time step) 
               mu                =   1            ( Value of μ ) 
               h                   =    0.1        (x increment) 
 
 
               Table 4  Parameters for procedure integ located at $O$4 

 
******************************************************************* 
The spreadsheet (Table 3) following row 4 (which contain the initial values) utilizing procedure integ is 
generated  in the following way:   
 
integ has the following arguments: 
 
Integ( current time, current values of the nine dependent variables at the 
                  current time, parameter vector) 
   
1. Row 5  of Table 3 is highlighted from A5 to J5 to receive the output of   Integ: 
 
Enter into the formula bar: 
 
=integ($A4,$B4:$J4,$O$4) 
 
(The input to procedure integ from Table 3 is:   integ  (0., 0.487503, 0.475021…0.389361, $O$4)  ) 
 
2. Then enter Ctrl+Shft+Enter (array formula) 
 
The output of integ is placed into the highlighted cells A5 to J5 in row 5 of at time 0.005 . (The time is 
Incremented by 0.005 in procedure integ). 
 
Integration at additional times is carried out by copying the row at time 0.005                 . 
 
The integ procedure (Appendix 1) sets up the call to the integration procedure rk4a  (a fourth order 
Runge-Kutta Routine)  which integrates the nine  differential equations of Eq. ( 5). 
 
Figure 1 compares the exact solution to the solution utilizing the Method of Lines. 
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        Figure 1.  Value of u vs time comparing the exact value (series 1) to the value  
                         of u utilizing the Method of Lines (series 2).  The series overlap. 

 
 
 Setting  μ = 0.001 
 
Changing the value of the parameter μ to 0.001 (from 1) dramatically 
changes  the chart  of the exact value  of the dependent variable u with time (Figure 2 )- 
compare  Figure 1. The change[8] is even more dramatic when the Method of Lines 
is utilized in the solution (Figure 3 ). 
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Figure 2. The exact solution (Eq. (2)) with μ = 0.001 
 

 

 
 
      Figure 3. The solution of Eq.(1) when utilizing the Method of Lines. 
 
      Conclusion 
 
       The use of VBA was found to be a suitable vehicle for the study of  
       Burgers’ equation by the Method of Lines. A small time step size  (0.005) was 
       used  to  achieve stability  and accuracy when integrating the equations 
       approximating Burgers’ equation. 
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       This small step size resulted in a  large spreadsheet ( 3035 rows @ time = 15.17).  The 
       procedure TRY (Appendix I) was used to select a subset of data points for charting.   
 
       A method of attaching a VBA file to a Word file is addressed in Appendix II. 
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                                Appendix II 

                 Attaching a .bas file to a Word file  

The author found that directly attaching a VBA procedure  (a .bas file) to a 
 Word file (a .docx file) is not possible. 
 
This Appendix lists the procedure used by the author to create 
the listing of the VBA procedure shown in Appendix I. 
 
Computer:  ASUSTEK Computer Inc.  Q 400A 
Printer:  HP Officejet 4620 
Software:  Office 2010  (Word and Excel) 
 

From the HP Website download and install  
4620 Software and Driver Assistant 

 
1. Print the VBA file which is desired to be attached to the Word file 
2. Scan the resulting printed sheets on your printer. 
         a. Click on Scan option (Copy, Fax, Scan) 
         b. Select Others 
         c.  Select Scan to user 
         d.  Select ‘Save as Tiff’ 
         e.   Start Scan 
 
3. On the computer  (attached to the printer) a jpg file will be found at: 
 
     Desktop 
       Libraries 
          Documents 
             Scanned Documents 
                  Image(2).jpg 
 
4. Convert jpg file to the docx file (using  a program such as  Pixillion from NCH) 
 
5. Copy this (docx) file to the Word file. 


