A Review: Utilizing VBA to Solve Burgers' Equation by The Method of Lines

Edward M. Rosen EMR Technology Group Chesterfield, Missouri, 63017

Introduction

There have been a number of studies that have solved Burgers' equation ^[1] by the Method of Lines^[2,3,4,5,6]. None (have been found), however, that have utilized VBA and presented the results in a spreadsheet format.

A solution to Burgers' equation programmed in VBA is the topic of this paper. A fourth order Runge-Kutta differential equation routine in VBA is included.

Appendix I is a complete listing of the VBA program. Appendix II is the author's method of converting the VBA program file (*.bas file) into a Word file (*.xlsm file) so that the VBA program can be listed as part a Word file.

Burgers' Equation in One Dimension

Burgers' equation provides a simplified model of fluid dynamics combining nonlinear advection and linear diffusion. In one dimension. it is the nonlinear partial differential equation

$$\partial u/\partial t + u \, \partial u/\partial x = \mu \, \partial^2/\partial x^2$$
 (1) or $u_t + u \, u_x = \mu \, u_{xx}$

There are a number of solutions ^[7] that have been shown to satisfy Eq. (1). One of the simplest is Eq. (2)

$$u(t,x) = 1/(1 + exp((2x - t)/4\mu))$$
 (2)

The parameter μ (which can be interpreted as viscosity ^[1]) controls the balance between convection and diffusion. For x between 0 and 1 and μ = 1, Table 1 gives the exact solution to Eq. (2) at various values of t. When t $\rightarrow \infty$ all entries go to 1.

Exact								
Solution								
ıı=1								

	μ=1										
time			x ==== →								
sec	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
0.00	0.5000	0.4875	0.4750	0.4626	0.4502	0.4378	0.4256	0.4134	0.4013	0.3894	0.3775
0.20	0.5125	0.5000	0.4875	0.4750	0.4626	0.4502	0.4378	0.4256	0.4134	0.4013	0.3894
0.40	0.5250	0.5125	0.5000	0.4875	0.4750	0.4626	0.4502	0.4378	0.4256	0.4134	0.4013
0.60	0.5374	0.5250	0.5125	0.5000	0.4875	0.4750	0.4626	0.4502	0.4378	0.4256	0.4134
0.80	0.5498	0.5374	0.5250	0.5125	0.5000	0.4875	0.4750	0.4626	0.4502	0.4378	0.4256
1.00	0.5622	0.5498	0.5374	0.5250	0.5125	0.5000	0.4875	0.4750	0.4626	0.4502	0.4378
1.20	0.5744	0.5622	0.5498	0.5374	0.5250	0.5125	0.5000	0.4875	0.4750	0.4626	0.4502
1.40	0.5866	0.5744	0.5622	0.5498	0.5374	0.5250	0.5125	0.5000	0.4875	0.4750	0.4626
1.60	0.5987	0.5866	0.5744	0.5622	0.5498	0.5374	0.5250	0.5125	0.5000	0.4875	0.4750
1.80	0.6106	0.5987	0.5866	0.5744	0.5622	0.5498	0.5374	0.5250	0.5125	0.5000	0.4875
2.00	0.6225	0.6106	0.5987	0.5866	0.5744	0.5622	0.5498	0.5374	0.5250	0.5125	0.5000
2.20	0.6341	0.6225	0.6106	0.5987	0.5866	0.5744	0.5622	0.5498	0.5374	0.5250	0.5125
2.40	0.6457	0.6341	0.6225	0.6106	0.5987	0.5866	0.5744	0.5622	0.5498	0.5374	0.5250
2.60	0.6570	0.6457	0.6341	0.6225	0.6106	0.5987	0.5866	0.5744	0.5622	0.5498	0.5374
2.80	0.6682	0.6570	0.6457	0.6341	0.6225	0.6106	0.5987	0.5866	0.5744	0.5622	0.5498
3.00	0.6792	0.6682	0.6570	0.6457	0.6341	0.6225	0.6106	0.5987	0.5866	0.5744	0.5622

Table 1. Solution of Eq. (2), $0 \le x \le 1$, $\mu = 1$

The Method Lines

To apply the Method of Lines (MOL) to the solution of Eq.(1), the partial derivatives in the x direction are approximated numerically (where h = 0.1 is the mesh size)

$$(u_x)_i = (u_{i+1} - u_{i-1})/2h$$
 (3)

$$(u_{xx})_i = (u_{i+1} - 2 u_i + u_{i-1})/h^2$$
 (4)

Substituting (3) and (4) into equation (1)

$$du_{i}/dt + u_{i} ((u_{i+1} - u_{i-1})/2h) - \mu ((u_{i+1} - 2u_{i} + u_{i-1})/h^{2}) = 0$$

$$i = 1....9$$
(5)

Boundary values, U0 and U10, are supplied from Eq. (2).

Table 2 Is the VBA Code for the nine differential equations (Eq. (5)) which are integrated at each time step. The integration is carried out in VBA procedure **integ**.

U0 and U10 are boundary values from Eq. (2)

```
U0 = 1/(1 + Exp((-t)/(4*mu))
U10 = 1/(1 + Exp((2-t)/(4*mu))
```

```
fff(1) = -U1 * (U2-U0)/(2*h) + mu *(U2-2*U1+U0)/(h*h)

fff(2) = -U2 * (U3-U1)/(2*h) + mu *(U3-2*U2+U1)/(h*h)

fff(3) = -U3 * (U4-U2)/(2*h) + mu *(U4-2*U3+U2)/(h*h)

fff(4) = -U4 * (U5-U3)/(2*h) + mu *(U5-2*U4+U3)/(h*h)

fff(5) = -U5 * (U6-U4)/(2*h) + mu *(U6-2*U5+U4)/(h*h)

fff(6) = -U6 * (U7-U5)/(2*h) + mu *(U7-2*U6+U5)/(h*h)

fff(7) = -U7 * (U8-U6)/(2*h) + mu *(U8-2*U7+U6)/(h*h)

fff(8) = -U8 * (U9-U7)/(2*h) + mu *(U9-2*U8+U7)/(h*h)
```

fff(9) = -U9 * (U10-U8)/(2*h) + mu * (U10-2*U9+U8)/(h*h)

U1..U9 are the current values of the dependent variable, fff(1)..fff(9) (du_i/dt) are the Right hand sides of the nine differential equations, U0 and U10 are the boundary values from Eq.(2) and t is time

Table 2. VBA Code in **integ** for Integration of the nine differential equations

The Spreadsheet Implementation

Table 3 is the spreadsheet for the Method of Lines solution. In order to compare the Method of Lines results with Table 1 (exact solution) the boundary values at time = 0 and the boundary values at x = 0 and x = 1 are taken from Eq. (2). Column A is the time.

Burgers ' Equation One Dimensional

Α	В	С	D	Е	F	G	Н	1	J
Time	0.10000	0.2000	0.3000	0.40000	0.5000	0.6000	0.70000	0.8000	0.9000
0.000000	0.487503	0.475021	0.462570	0.450166	0.437823	0.425557	0.413382	0.401312	0.389361
0.005000	0.487815	0.475332	0.462881	0.450475	0.438131	0.425863	0.413686	0.401613	0.389658
0.010000	0.488127	0.475644	0.463192	0.450785	0.438439	0.426169	0.413989	0.401913	0.389955
0.015000	0.488439	0.475956	0.463502	0.451094	0.438747	0.426474	0.414292	0.402213	0.390253
0.020000	0.488752	0.476268	0.463813	0.451404	0.439054	0.426780	0.414595	0.402514	0.390550
0.025000	0.489064	0.476579	0.464124	0.451713	0.439362	0.427086	0.414899	0.402815	0.390848

Table 4 is a list of parameters used by procedure **integ** for the integration of the nine equations.

The value of delt (0.005) was selected by trial to achieve stability and accuracy.

Parameters for procedure Integ

```
\begin{array}{lll} N & = & 9 & \text{(Number of Equations)} \\ \text{delt} & = & 0.005 & \text{(Time step)} \\ \text{mu} & = & 1 & \text{(Value of } \mu \text{)} \\ \text{h} & = & 0.1 & \text{(x increment)} \end{array}
```

Table 4 Parameters for procedure integ located at \$0\$4

The spreadsheet (Table 3) following row 4 (which contain the initial values) utilizing procedure **integ** is generated in the following way:

integ has the following arguments:

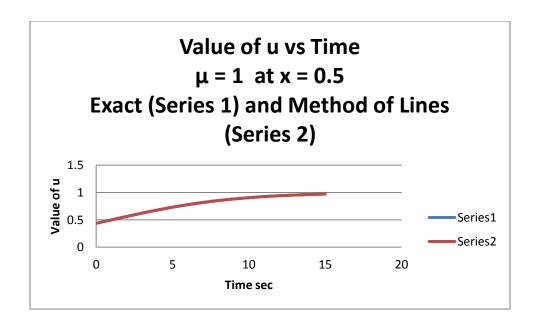
Integ(current time, current values of the nine dependent variables at the current time, parameter vector)

1. Row 5 of Table 3 is highlighted from A5 to J5 to receive the output of **Integ**:

Enter into the *formula bar*:

```
=integ($A4,$B4:$J4,$O$4)
```

(The input to procedure integ from Table 3 is: integ (0., 0.487503, 0.475021...0.389361, \$O\$4))


2. Then enter *Ctrl+Shft+Enter* (array formula)

The output of **integ** is placed into the highlighted cells A5 to J5 in row 5 of at time 0.005. (The time is Incremented by 0.005 in procedure **integ**).

Integration at additional times is carried out by copying the row at time 0.005

The **integ** procedure (Appendix 1) sets up the call to the integration procedure **rk4a** (a fourth order Runge-Kutta Routine) which integrates the nine differential equations of Eq. (5).

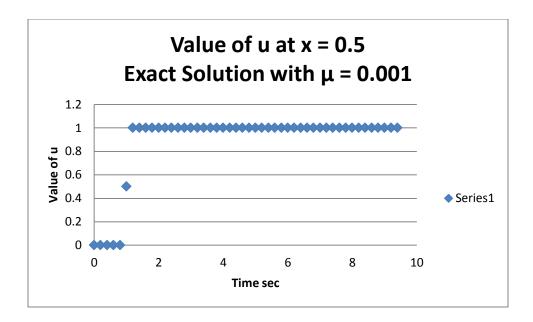

Figure 1 compares the exact solution to the solution utilizing the Method of Lines.

Figure 1. Value of u vs time comparing the exact value (series 1) to the value of u utilizing the Method of Lines (series 2). The series overlap.

Setting $\mu = 0.001$

Changing the value of the parameter μ to 0.001 (from 1) dramatically changes the chart of the exact value of the dependent variable u with time (Figure 2)-compare Figure 1. The change $^{[8]}$ is even more dramatic when the Method of Lines is utilized in the solution (Figure 3).

Figure 2. The exact solution (Eq. (2)) with $\mu = 0.001$

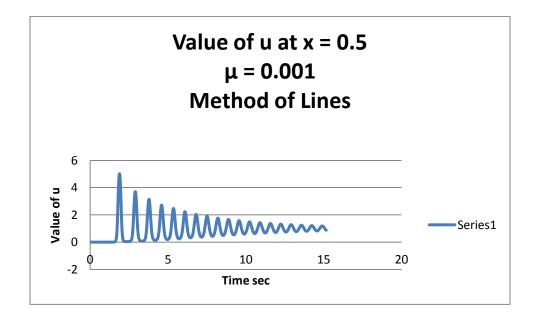


Figure 3. The solution of Eq.(1) when utilizing the Method of Lines.

Conclusion

The use of VBA was found to be a suitable vehicle for the study of Burgers' equation by the Method of Lines. A small time step size (0.005) was used to achieve stability and accuracy when integrating the equations approximating Burgers' equation.

This small step size resulted in a large spreadsheet (3035 rows @ time = 15.17). The procedure **TRY** (Appendix I) was used to select a subset of data points for charting.

A method of attaching a VBA file to a Word file is addressed in Appendix II.

References

- 1. http://en.wikipedia.org/wiki/Burgers%27_equation
- 2. Schiesser, W. E., The Numerical Method of Lines Integration of Partial Differential Equations, Academic Press, 1991
- 3. Biazar, J., Z.Ayati and S. Shahbazi, "Solution of the Burgers Equation by the Method of Lines", American Journal of Numerical Analysis 2014 2 (1) pp 1-2
- 4. Nguyen, Vinh Q. ," A Numerical Study of Burgers' Equation With Robin Boundary Conditions", Master of Science Thesis, Virginia Tech
- 5. Handi, S., W.E.Schiesser and G.W.Griffiths, "Method of Lines" http://www.scholarpedia.org/
- 6. Sadiku, M.N.O. and C.N.Obizor, "A simple introduction to the Method of lines", *International Journal of Electrical Engineering Education*, Vol. 37, No 3.
- 7. http://web.engr.illinois.edu/~heath/iem/pde/burgers/
- 8. http://pauli.uni-muenster.de/tp/fileadmin/lehre/NumMethoden/WS1011/script1011.pdf

Appendix I

```
Module1 - 1
Option Explicit
Private Function integ(x, y, prm)
Dim N, IR, NN, I As Integer
Dim h, xx, delt As Double
N = prm(1)
NN = N + 1
ReDim yy(1 To N) As Double ReDim ddd(1 To NN)
delt = prm(2)
x = x
For I = 1 To N
  yy(I) = y(I)
IR = rk4a(N, delt, xx, yy, prm)
xx = xx + delt
ddd(1) = xx
For I = 2 To NN
   ddd(I) = yy(I - 1)
Next I
integ = ddd
End Function
 Public Function rk4a(N, h, x, y, prm)
 'Modified from Pedro L. Claveria abril/2002
 'based in EMR Technology Group Library
 'n = number of equations
 'h = step size for integration
 'x = independent variable
 'y = vector of dependent variables
 'prm = vector parameters
Dim mudal, muda2, muda3, muda4 As Double
 Dim I As Integer
 'Calculation of kl
 mudal = dydx(x, y, prm, fff)
For I = 1 To N: k1(I) = fff(I): Next
 'Calculation of k2
 For I = 1 To N: y2(I) = y(I) + 0.5 * h * k1(I): Next muda2 = dydx(x + h / 2, y2, prm, fff)
For I = 1 To N: k2(I) = fff(I): Next
 'Calculation of k3
 For I = 1 To N: y3(I) = y(I) + 0.5 * h * k2(I): Next muda3 = dydx(x + h / 2, y3, prm, fff)
For I = 1 To N: k3(I) = fff(I): Next
 'Calculation of k4
 For I = 1 To N: y4(I) = y(I) + h * k3(I): Next muda4 = dydx(x + h, y4, prm, fff)
For I = 1 To N: k4(I) = fff(I): Next
```

```
Module1 - 2
'New values of the dependent variables
For I = 1 To N
   ccc(I) = y(I) + (h / 6) * (k1(I) + 2 * k2(I) + 2 * k3(I) + k4(I))
For I = 1 To N
   y(I) = ccc(I)
Next I
rk4a = 0
End Function
Private Function dydx(xx, yy, prm, fff)
Dim UO, U1, U2, U3, U4, U5, U6, U7, U8, U9, U10 As Double
Dim delt, mu, h As Double
Dim N, K As Single
'prm (1) = N
'prm (2) = delt
'prm (3) = mu
'prm(4) = h
h = prm(4)
mu = prm(3)
delt = prm(2)
 yy(1) = U1
yy(2) = U2
 yy(3) = U3
yy(4) = U4
  yy(5) = U5
yy(6) = U6

yy(7) = U7
yy(8) = U8
yy(9) = U9
U1 = yy(1)
U2 = yy(2)
U3 = yy(3)
U4 = yy(4)
U5 = yy(5)
U6 = yy(6)
U7 = yy(7)

U8 = yy(8)

U9 = yy(9)
    U0 = 1 / (1 + Exp((-xx) / (4 * mu)))
     U10 = 1 / (1 + Exp((2 - xx) / (4 * mu)))
fff(8) = -U8 * (U9 - U7) / (2 * h) + mu * (U9 - 2 * U8 + U7) / (h * h)
 fff(9) = -U9 * (U10 - U8) / (2 * h) + mu * (U10 - 2 * U9 + U8) / (h * h)
 dydx = 0
 End Function
```

```
Module1 - 3
Private Function TRY()
'Generation of Selected Plot Points
Dim GG(10), J, K, L, JJ As Integer
JJ = 1
For J = 7 To 3037 Step 5

For K = 1 To 10

GG(K) = Cells(J, K)
      Next K
      For L = 1 To 10 Cells(JJ, 40 + L) = GG(L)
      Next L
      JJ = JJ + 1
 Next J
End Function
```

Appendix II

Attaching a .bas file to a Word file

The author found that directly attaching a VBA procedure (a .bas file) to a Word file (a .docx file) is not possible.

This Appendix lists the procedure used by the author to create the listing of the VBA procedure shown in Appendix I.

Computer: ASUSTEK Computer Inc. Q 400A

Printer: HP Officejet 4620

Software: Office 2010 (Word and Excel)

From the HP Website download and install 4620 Software and Driver Assistant

- 1. Print the VBA file which is desired to be attached to the Word file
- 2. Scan the resulting printed sheets on your printer.
 - a. Click on Scan option (Copy, Fax, Scan)
 - b. Select Others
 - c. Select Scan to user
 - d. Select 'Save as Tiff'
 - e. Start Scan
- 3. On the computer (attached to the printer) a jpg file will be found at:

Desktop
Libraries
Documents
Scanned Documents
Image(2).jpg

- 4. Convert jpg file to the docx file (using a program such as Pixillion from NCH)
- 5. Copy this (docx) file to the Word file.