
1

 A VBA Solution to “SEMI-BATCH STEAM DISTILLATION OF A BINARY
 ORGANIC MIXTURE”
 Edward M. Rosen
 EMR Technology Group
 Chesterfield, Missouri 63017
Introduction

It is the purpose of this paper to:

1. Present a VBA/spreadsheet solution to solve a steam distillation problem [1].
2. Compare a “controlled integration” solution[1] which uses POLYMATH[TM]

and a MATLAB® solution to the VBA/spreadsheet solution.
3. Implement a “controlled integration” VBA/spreadsheet solution and compare it to

the authors[1] solution

The problem is first reviewed together with the solution given by the authors[1,2,3].
The VBA solution and its spreadsheet implementation are then presented. The VBA solution
is compared with the POLYMATHTM[4] /MATLAB®[5] solutions.

Finally a spreadsheet solution using “controlled integration” is presented which differs from that of the
authors[1]..

Problem Statement and Solution [1]

“Initially M = 0.0.015 kmol of organics (Fig 1) with composition x1 = 0.725 is charged into the still.
The initial temperature in the still is To = 25 C. Starting at time t=0, steam at a temperature
Tsteam = 99.2o C is bubbled continuously through the organic phase at a rate of MS = 3.85E-5 kmol/s.
All the steam is assumed to condense during the heating period. The ambient temperature is
TE = 25o C and the heat transfer coefficient between the still and the surroundings is UA = 1.05 J/s-K.
The ambient pressure is P = 9.839E+04 Pa.”

 Figure I Schematic Plot of steam distillation (From Reference 1 with
 permission)

2

The differential equations representing this steam distillation are given in Reference 1.
Figure II are the results [1] presented by the authors for the heating and distillation
cycles. Figure III is additional results.

 Figure II Results of the integrations from Reference 1 (with permission)

3

 Figure III Additional Results from Reference 1 (with permission)

VBA Functions

The VBA function procedures used by the current author are listed in the Appendix. The
functions are:

1. Integ - This is the function invoked from the spreadsheet with
 Ctrl+ Shft+Enter with input of time, Temperature and Mass of Water (Heating) or
 time, Mass Water (MW), Mx1 and Mx2 (Distillation). Output is

 to the cells which are highlighted.
2. Rk4a – This is a classical fourth-order Runge-Kutta integration procedure.

 3. dydx - This provides the right hand sides for the integration procedures
 for heating and distillation.
 4. DMM – A bubble point procedure called during distillation.
 The bubble point is calculated each time the
 integration routine evaluates the right hand side of the
 differential equations. The bubble point
 temperature is used to evaluate the physical property equations.

 The bubble point is calculated using Newton’s method:
 Find TK which makes f(TK) = 0

 f(TK) = 1 – y1-y2-yw.
 f’(TK) = -d y1 /d TK - dy2 /d TK - dyw /d TK

 Each derivative in turn is determined analytically then evaluated numerically. Then

 TKnew = TK - f(TK)/f’(TK)

 The above is repeated until f(TK) is less than 1.E-6 (see Figure A5)

4

 5. Interp – a general interpolation procedure.
 Generally quadratic interpolation is used.
 6. Coth and Tanh – VBA does not provide these functions.
 Note: In VBA ln (natural log) is log.

 **

Heating Cycle

Table I is a spreadsheet implementation of the heating cycle. Two differential equations
 (for T and MW) are solved (Reference 1). The initial conditions are set at time zero (line 7)
utilizing values from the parameter vector (at L6) and the physical properties of n-octane
and n-decane.

On the line following the time 0 line, the cells A8 to C8 are high lighted. The command
= integ($A7,$B7:$C7,$L$6) is entered with Ctrl+Shift+Enter which invokes the integ
procedure (Figure A1). The remaining entries on the line 8 are calculated from the values
returned from the integ procedure (time, MW and T) and by copying parts of line 7. The
entries at subsequent times (h = 20 sec) are calculated by copying the line above.

 The function dydx (Figure A3) is called by the integration routine rk4a (4th Order Runge- Kutta –
Figure A2) which is called in turn by function integ. Each step repeats the above until fT (value
of 1 – y1-y2-yw) crosses 0. The time to reach the bubble point (fT = 0) is determined by
interpolation (Figure A6) of fT vs. Time.

When the time to the bubble point is determined, that time is used to find (by interpolation)
the corresponding values of y1, y2, MW and yw.

Table II compares the VBA solution to that of Reference 3 at the bubble point. Both solutions
agree with each other very well. This assures that the equations used to evaluate the physical
properties in the spreadsheet solution and those given in Reference 1 are consistent.

5

 Table I Spreadsheet for Heating

 Table II Comparison of Solutions– Heating Cycle

 Comparison of Solutions At The
 Bubble point

 Variable Initial Values POLYMATH** VBA*

 MW 0 0.006996 0.0069954

Q 0 68.93874 68.927

T 25 90.65594 90.65

t 0 181.72 181.7012

y1 0.0137865 0.251608 0.25153

y2 0.0005059 0.01806 0.01805

yw 0.0322226 0.730306 0.730096

 * Using Interpolation at the bubble point
 **Reference 3

6

Distillation Cycle

During the distillation cycle three differential equations are integrated - for MW, Mx1 and Mx2.
Table III is the corresponding spreadsheet. The starting values for t, MW, Mx1 and Mx2 are
taken from the ending values of the heating cycle and are entered on line 6. The temperature
(Deg TK) is calculated by calling DMM with arguments of Mx1 and Mx2. The temperature. Deg C
= TK - 273.15.

The remaining values on line 6: x1, x2, y1, y2, x1(dist), x2(dist) , yw are calculated from the
value of TK, the values of Mx1 and Mx2, the physical properties of n-octane and n-decane,
and the values in the parameter vector. The next time increment (line 7) is calculated from the
values in line 6. Enter the command =Integ($A6,$B6:$D6,$T$4), highlight the output area $A7
to $D7 and enter Ctrl+Shift+Enter. T4 is the parameter vector which contains the step size h.

Once the output is obtained the rest of the line is obtained by copying the line above.
The copy command is then used to obtain as many time steps as desired.

The integ function (Figure A1) calls the Runge-Kutta function which carries out the integration.

The integrator (function rk4a) calls the function dydx (Figure A4) a number of times. In turn
the dydx function calls the bubble point function (DMM – Figure A5) that determines the
temperature at which the physical property routines are evaluated. The step size (h) on the
spreadsheet is chosen so that it will end at a time of 2000 sec. (for purposes of comparison[1]).
The parameter vector (prm) contains a starting value for the DMM bubble point procedure as
well as other values used by the dydx function procedure.

Table IV compares the Reference 1 solution to the VBA spreadsheet solution
at 2000 sec.

7

Comparison: Distillation -2000 seconds

 Variable Initial Value Final VBA Final

Reference 3

x1 0.725 0.002332 0.01995

x2 0.275 0.9977 0.98005

y1 0.2516431 0.000995 0.008464

y2 0.0180626 0.08433 0.082287

x1(dist} 0 0.7628 0.791748

x2(dist) 0 0.2372 0.208252

Mx1 0.010875 1.74E-06 2.59E-05

Mx2 0.04125 7.44E-04 0.001271

T * 90.66 96.726 96.56247

MW 0.0069955 0.0170323 0.022794

Q 68.943 75.312 75.1406

eps

 4E-07 1.77E-06

* Temperature determined from Bubble Point of

 DMM (VBA)

 Table IV Comparison of VBA Solution and Reference 3

8

 Table III Spreadsheet of the Distillation Cycle

 Note: TK is determined at each step by the function DMM.

9

 Figure IV Plots from the VBA Solution for Distillation

Figure IV are plots of several of the dependent variables vs. time from the spreadsheet
solution. They are distinctly different from the authors’[1] plots shown in Figure II.

The spreadsheet (Table III) keeps track of the percent octane recovered in a column so designated.

Interpolation (Figure A6) is used to determine the percent of n-octane recovered when x1(dist)
=0.90 (plot of x1(dist) vs. percent recovered). Similarly an interpolation of x1(dist) vs. time
determines the recovery time (at x1(dist) =0.90). Parametric cases (different feed
concentrations) are evaluated by changing the entries in the parameter list (prm). (“Set
Formulas, Calculation Options, Manual. To evaluate the spreadsheet enter Calculate Now”).
Simply changing the values of the feed in the prm vector and recalculating the spreadsheet
allows the parametric study.

Table V indicates how the %Recovery (and Recovery Time) varies as a function of the feed
fraction of n-octane. A plot of the authors’[1] results are shown in Figure II (Additional Results).

10

Comparison: %Recovery of n-octane - VBA Solution and
 Reference 3 when x1(dist) = 0.90

n-Octane Reference 3 VBA Spreadsheet

Mole
Fraction

 t (min) %
Recovery

 t (min) %
Recovery

in Feed to
Recovery

 to
Recovery

0.635 3.82 3.71 3.68 3.82

0.64 4.75 8.61 4.56 8.89

0.65 6.52 17.8 6.27 18.47

0.67 9.85 34.21 9.46 35.54

0.7 14.41 55.03 13.69 56.43

0.725 17.87 69.42 16.74 70.06

0.75 20.74 80.23 19.35 80.65

0.775 23.14 88.29 21.55 88.57

0.8 25.1 93.98 23.34 94.11

0.825 26.62 97.56 24.74 97.61

0.85 27.75 99.39 25.79 99.37

0.875 28.58 99.96 26.57 99.95

0.89 29 100 26.96 99,99

0.895 29.13 100 27.09 100

 Table V % Recovery as a function of fraction n-Octane in Feed

A Spreadsheet Solution Using “Controlled Integration[6] ”

The author’s spreadsheet solution was modified by adding a fourth differential equation
 dT/dt = Kc * eps in place of the DMM routine. The dydx routine was replaced by the one in Figure A8
to allow integration with “controlled integration”. Thus, the bubble point temperature is determined by
this differential equation rather than by the DMM function. Figure VI is plot of the still temperature vs.
time and Figure VII is a plot of x1 and x2 vs. time resulting from “controlled integration”.

 The shapes of T vs. time and x1, x2 vs. time compares well with this author’s VBA solution
(Figure IV) rather than with the shape presented in Figure II by the authors[1]. It was found that, a small
value of Kc (2 rather than 1000) and a step size of 33.67 sec (to end up at 2000 sec) was
needed to achieve stability. The numerical output at 2000 sec compared very well with that obtained by
the VBA solution (Table VI).

11

 Figure VI Temperature vs. Time Using “controlled integration”

 Figure VII x1 and x2 vs. Time Using “controlled Integration”

90

91

92

93

94

95

96

97

98

0 10 20 30 40

Te
m

p
e

ra
tu

re
 -

 D
e

g
C

Time - min

Spreadsheet - Controlled Integration
(Kc = 2, Step Size = 33.67 sec

Series1

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40

M
o

le
 F

ra
ct

io
n

Time - min

Spreadsheet - Controlled Integration
(Kc = 2, Step Size = 33.67 sec)

x1

x2

12

 Table VI VBA solution vs. “Controlled Integration”
 solution on a Spreadsheet

Conclusions

The VBA solution and the POLYMATH[TM] solution listed in Reference 3 match almost exactly for
the heating cycle (Table II) which integrates T and Mx1. However, in the distillation cycle the
POLYMATH [TM] and VBA results (Table IV) differ both in the results after 2000 sec and in the shape of the
dependent variable values with time (Figures II and IV). The POLYMATH[TM] solution uses “controlled
integration” [1] with Kc = 1000. This requires [1] a “stiff “integrator (available in POLYMATH{TM} [7]) and an
additional differential equation, dT/dt = Kc * eps where eps is the bubble point error. The differences
between the “stiff” integrator which integrates four equations (MW, Mx1, Mx2 and T) and the
classical Runge-Kutta integrator used in the VBA solution which integrates three equations (MW, Mx1
and Mx2) may cause the differing results.

Table V (% Recovery of n-octane when x1(dist)= 0.90) shows that the differences between the VBA
solution and the MATLAB® solution are not large. These differences may result from interpolation
errors in the VBA solution and/or equation solving errors in MATLAB® .

Comparison VBA vs. "Controlled
Integration"

 Spreadsheet Solutions
 At 2000 Sec X10 = 0.725 h = 33.6722

 Variable VBA "Controlled

Integration"

 Kc = 2

MW 0.01703 0.01703

Mx1 2.00E-06 2.00E-06

Mx2 0.00074 0.00074

Deg C 96.728 96.719

x1 0.002 0.002

x2 0.998 0.998

y1 0.001 0.001

y2 0.0843 0.0843

x1(dist) 0.763 0.763

x2(dist) 0.237 0.237

yw 0.915 0.914

eps 4.00E-07 0.0002

%Recovered 99.98401 99.98411

Q 75.3123 75.3054

13

This author was successful in generating a “controlled integration” solution for the distillation cycle with
a value of Kc = 2. The solution matched the VBA distillation solution almost exactly. The integration was
carried out with a Runge-Kutta routine and the average value of eps was 0.0053. This suggests that the
need for a large value of Kc (with the need for a “stiff” integrator) was not needed. It is unknown if this
results can be generalized. Setting Kc = 1000 caused the Runge-Kutta integrator to “blow up”.

Acknowledgement

The author would like to thank Chemical Engineering Education and the authors of Reference 1 for
permission to copy the Tables and Figures of their paper.

References
1. Shacham, M. , M. B. Cutlip, and M. Elly, “ SEMI-BATCH STEAM

DISTILLATION OF A BINARY ORGANIC MIXTURE”, Chemical Engineering
Education, 46(3), 173 (2012)

2. Shacham, M. , M. B. Cutlip, and M. Elly, “ SEMI-BATCH STEAM
DISTILLATION OF A BINARY ORGANIC MIXTURE” , CACHE News,
Summer 2012

3. Shacham, M. , M. B. Cutlip, and M. Elly, “ SEMI-BATCH STEAM
DISTILLATION OF A BINARY ORGANIC MIXTURE – a Demonstration of
Advance :problem Solving Techniques and Tools”,

 ftp://ftp.bgu.ac.il/Shacham/SteamDist/
 4. POLYMATH is a product of Polymath Software
 <http://www.polymath.software.com>
 5. MATLAB is a product of Mathworks, Inc.,
 <http://www.mathworks.com>
 6. Shacham, M., N. Brauner and M. Pozin, “Application of Feedback
 Control Principles for Solving Differential Algebraic Systems of Equations
 In Process Control Education”, Computers Chemical Engineering Vol . 20,
 Suppl., pp 1329-1334, 1996
 7 POLYMATH Integration Algorithms ,<,http://www.polymath-software.com

ftp://ftp.bgu.ac.il/Shacham/SteamDist/

14

 APPENDIX

 Listing of VBA Functions

15

16

17

18

19

20

21

Private Function DMM(MX1, MX2, prm)
' Given MX1 and Mx2 find the Temp (TK) that satisfies 1-y1-y2-y3 = 0 (bubble pt)

' Prepare for Newton Method

Dim X1, X2, P As Single
Dim TC, TK, TKnew As Single
Dim Y1, Y2, YW, FOX As Single

Dim FOXP, DY1, DY2, DYW As Single
Dim DERY1, DERY2, DERYW As Single
Dim V1, V2, VW, NCOUNT, ITER As Single

X1 = MX1 / (MX1 + MX2)
X2 = MX2 / (MX1 + MX2)

P = prm(10)

TC = prm(12)
TK = TC + 273.15

NCOUNT = 0
ITER = prm(13)

Q1:

' Start of Loop

 NCOUNT = NCOUNT + 1
 If NCOUNT > ITER Then MsgBox " MORE ITERATIONS THAN PRM(13) in DMM"
 If NCOUNT > ITER Then Exit Function

' Evaluate Bubble Point at TK

V1 = 96.084 - 7900.2 / TK - 11.003 * Log(TK) + 0.0000071802 * TK ^ 2
V2 = 112.73 - 9749.6 / TK - 13.245 * Log(TK) + 0.0000071266 * TK ^ 2
VW = 73.649 - 7258.2 / TK - 7.3037 * Log(TK) + 0.0000041653 * TK ^ 2

Y1 = (X1 / P) * Exp(V1)
Y2 = (X2 / P) * Exp(V2)
YW = (1 / P) * Exp(VW)

'Evaluate FOX (f(x))

FOX = 1# - Y1 - Y2 - YW

22

If Abs(FOX) >= 0.000001 Then GoTo Q2:

DMM = TK

Exit Function

Q2:

' Evaluate FOXP (f'(x))

DERY1 = Exp(V1) * ((7900.2 / (TK ^ 2) - 11.003 / TK + 2 * 0.0000071802 * TK))
DERY2 = Exp(V2) * ((9749.6 / (TK ^ 2) - 13.245 / TK + 2 * 0.0000071266 * TK))
DERYW = Exp(VW) * ((7258.2 / (TK ^ 2) - 7.3037 / TK + 2 * 0.0000041653 * TK))

DY1 = (X1 / P) * DERY1
DY2 = (X2 / P) * DERY2
DYW = (1 / P) * DERYW

FOXP = -(DY1 + DY2 + DYW)

' Newton's method

TKnew = TK - FOX / FOXP

TK = TKnew

GoTo Q1:

End Function

23

24

25

26

27

