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                                     Edward M. Rosen 
               EMR Technology Group 
                               Chesterfield, Missouri  63017  
Introduction 
 
It is the purpose of this paper to: 

1. Present a VBA/spreadsheet solution to solve a steam distillation problem [1]. 
2. Compare a “controlled integration”  solution[1] which uses POLYMATH[TM]   

and a MATLAB® solution to the VBA/spreadsheet solution. 
3. Implement a “controlled integration” VBA/spreadsheet  solution and  compare it to 

the authors[1] solution  
 

The problem is first reviewed together with the solution given by the authors[1,2,3]. 
The VBA solution and its spreadsheet implementation are then presented.  The VBA solution  
is compared with the POLYMATHTM[4]  /MATLAB®[5]   solutions. 
 
Finally a spreadsheet solution using “controlled integration” is presented which differs from that of the 
authors[1].. 
 

Problem Statement and Solution [1]  
 
“Initially M = 0.0.015 kmol of organics (Fig 1) with composition x1 = 0.725 is charged into the still.  
The initial temperature in the still is To = 25 C.  Starting at time t=0, steam at a temperature  
Tsteam = 99.2o C is bubbled continuously through the organic phase at a rate of MS = 3.85E-5 kmol/s. 
All the steam is assumed to condense during the heating period. The ambient temperature is 
TE = 25o C and the heat transfer coefficient between the still and the surroundings is UA = 1.05 J/s-K.  
The ambient   pressure is P = 9.839E+04 Pa.” 

  
 

       Figure I   Schematic Plot of steam distillation (From Reference 1 with 
                                  permission) 
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The differential equations representing this steam distillation are given in Reference 1.  
Figure II are the results [1] presented by the authors for the heating and distillation 
cycles. Figure III is additional results. 

 
                  
 

               Figure II Results of the integrations from Reference 1 (with permission) 
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                       Figure III Additional Results from Reference 1 (with permission) 
 
 
 
 

VBA Functions 
 
The VBA function procedures used by the current author are listed in the Appendix. The 
functions are: 

1.  Integ -  This is the function invoked from the spreadsheet with 
 Ctrl+ Shft+Enter with input of time, Temperature and Mass of Water (Heating) or 
 time, Mass Water (MW), Mx1 and Mx2 (Distillation). Output is 

                             to the cells which are highlighted.  
2.  Rk4a – This is a classical fourth-order Runge-Kutta integration procedure. 

                            3.     dydx -  This provides the right hand sides for the integration procedures 
                      for heating and distillation. 
              4.     DMM – A bubble point procedure called during distillation. 
                     The bubble point is calculated each time the 
                      integration routine evaluates the right hand side of the  
                      differential equations. The bubble point  
                     temperature is used to evaluate the physical property equations. 
 
                     The bubble point is calculated using Newton’s method: 
                     Find TK which makes f(TK) = 0 
 
                     f(TK) = 1 – y1-y2-yw. 
                     f’(TK) = -d y1 /d TK  - dy2 /d TK  - dyw /d TK 
 
                     Each derivative in turn is determined analytically then evaluated numerically. Then 
 
                     TKnew = TK  - f(TK)/f’(TK) 
 
                     The above is repeated until f(TK) is less than 1.E-6 (see Figure A5)   
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                              5.  Interp – a general interpolation procedure.  
                     Generally quadratic interpolation is used.   
               6.    Coth and Tanh – VBA does not provide these functions.   
                      Note:  In VBA ln (natural log) is log.             

 
                            ********************************************************** 

 
 
 
 
 
Heating Cycle 
 
Table I is a spreadsheet implementation of the heating cycle. Two differential equations 
 (for T and MW) are solved (Reference 1).  The initial conditions are set at time zero (line 7)  
utilizing values from the parameter vector (at $L$6) and the physical properties of n-octane 
and  n-decane. 
 
On the line following the time 0 line, the cells A8 to C8 are high lighted. The command 
= integ($A7,$B7:$C7,$L$6) is entered with Ctrl+Shift+Enter which invokes the integ 
procedure (Figure A1). The remaining entries on the line 8 are calculated from the values 
returned from the integ procedure (time, MW and T)  and by copying parts of line 7.    The 
entries at subsequent times (h = 20 sec) are calculated by copying the line above. 
 
 The function dydx (Figure A3) is called by the integration routine rk4a (4th Order Runge- Kutta – 
Figure A2) which is called in turn by function integ. Each step repeats the above until fT (value 
of 1 – y1-y2-yw) crosses 0.   The time to reach the bubble point (fT = 0) is determined by 
interpolation (Figure A6)  of fT vs. Time. 
 
When the time to the bubble point is determined, that time is used to find (by interpolation) 
the corresponding values of y1, y2, MW and yw. 
 
Table II compares the VBA solution to that of Reference 3 at the bubble point. Both solutions 
agree with each other very well. This assures that the equations used to evaluate the physical 
properties in the spreadsheet solution and those given in Reference 1 are consistent. 
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                           Table I      Spreadsheet for Heating       

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               Table II    Comparison of Solutions– Heating Cycle 
 
 

        Comparison of Solutions At The  
                    Bubble point                      

 

    Variable  Initial Values      POLYMATH**           VBA*  

    MW 0 0.006996 0.0069954 

Q 0 68.93874                        68.927 

T 25 90.65594 90.65 

t 0 181.72 181.7012 

y1 0.0137865 0.251608 0.25153 

y2 0.0005059 0.01806 0.01805 

yw 0.0322226 0.730306 0.730096 

       
 

    * Using Interpolation at the bubble point 
 **Reference 3 
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Distillation Cycle 
 
During the distillation cycle three differential equations are integrated - for MW, Mx1 and Mx2.  
Table III is the corresponding spreadsheet.   The starting values for t, MW, Mx1 and Mx2 are 
taken from the ending values of the heating cycle and are entered on line 6. The temperature 
(Deg TK) is calculated by calling DMM with arguments of Mx1 and Mx2. The temperature. Deg C  
= TK - 273.15. 
  
The remaining values on line 6: x1, x2, y1, y2, x1(dist), x2(dist) , yw are calculated from the  
value of TK, the values of Mx1 and Mx2, the physical properties of n-octane and n-decane, 
and the values in the parameter vector.  The next time increment (line 7) is calculated from the 
values in line 6. Enter the command =Integ($A6,$B6:$D6,$T$4), highlight the output area $A7 
to $D7 and enter Ctrl+Shift+Enter.   $T$4 is the parameter vector which contains the step size h. 
 
Once the output is obtained the rest of the line is obtained by copying the line above. 
The copy command is then used to obtain as many time steps as desired. 
 
The integ function (Figure A1) calls the Runge-Kutta function which carries out the integration. 
 
The integrator (function rk4a) calls the function dydx (Figure A4) a number of times. In turn 
the dydx function calls the bubble point function (DMM – Figure A5) that determines the 
temperature at which the physical property routines are evaluated.  The step size (h) on the 
spreadsheet is chosen so that it will end at a time of 2000 sec. (for purposes of comparison[1]). 
The parameter vector (prm) contains a starting value for the DMM bubble point procedure as 
well as other values used by the dydx function procedure. 
 
Table IV compares the  Reference 1 solution to the VBA spreadsheet solution 
at 2000 sec. 
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Comparison:  Distillation -2000 seconds 
 

    Variable Initial Value   Final VBA Final 

   
Reference 3 

x1 0.725 0.002332 0.01995 

x2 0.275 0.9977 0.98005 

y1 0.2516431 0.000995 0.008464 

y2 0.0180626 0.08433 0.082287 

x1(dist} 0 0.7628 0.791748 

x2(dist) 0 0.2372 0.208252 

Mx1 0.010875 1.74E-06 2.59E-05 

Mx2 0.04125 7.44E-04 0.001271 

T * 90.66 96.726 96.56247 

MW 0.0069955 0.0170323 0.022794 

Q 68.943 75.312 75.1406 

eps 
 

              4E-07     1.77E-06 

*  Temperature determined from Bubble Point of 

                             DMM (VBA) 
           

 
    Table IV  Comparison of VBA Solution and Reference 3 
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                  Table III  Spreadsheet of the Distillation Cycle 

           Note: TK is determined at each step by the function DMM. 
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                          Figure IV   Plots from the VBA Solution for Distillation 
 
 

Figure IV are plots of several of the dependent variables vs. time from the spreadsheet 
solution.  They are distinctly different from the authors’[1] plots shown in Figure II.  
 
The spreadsheet (Table III) keeps track of the percent octane recovered in a column so designated. 

Interpolation (Figure A6) is used to determine the percent of n-octane recovered when x1(dist) 
=0.90  (plot of x1(dist) vs. percent recovered).  Similarly an interpolation of x1(dist) vs. time 
determines the recovery time (at x1(dist) =0.90). Parametric cases (different feed 
concentrations) are evaluated by changing the entries in the parameter list (prm).  (“Set 
Formulas, Calculation Options, Manual. To evaluate the spreadsheet enter Calculate Now”). 
Simply changing the values of the feed in the prm vector and recalculating the spreadsheet 
allows the parametric study. 
 

Table V indicates how the %Recovery (and Recovery Time) varies as a function of the feed 
fraction of n-octane.  A plot of the authors’[1] results are shown in Figure II (Additional Results). 
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Comparison:      %Recovery of  n-octane - VBA Solution and  
                                        Reference 3    when x1(dist) = 0.90           

     

n-Octane                 Reference 3          VBA Spreadsheet  

Mole 
Fraction 

      t (min)     % 
Recovery 

       t (min)     % 
Recovery 

in Feed  to 
Recovery 

  to 
Recovery 

 

      

0.635 3.82 3.71 3.68 3.82 

0.64 4.75 8.61 4.56 8.89 

0.65 6.52 17.8 6.27 18.47 

0.67 9.85 34.21 9.46 35.54 

0.7 14.41 55.03 13.69 56.43 

0.725 17.87 69.42 16.74 70.06 

0.75 20.74 80.23 19.35 80.65 

0.775 23.14 88.29 21.55 88.57 

0.8 25.1 93.98 23.34 94.11 

0.825 26.62 97.56 24.74 97.61 

0.85 27.75 99.39 25.79 99.37 

0.875 28.58 99.96 26.57 99.95 

0.89 29 100             26.96         99,99 

0.895 29.13 100             27.09           100 

 
 
 

                    Table V     % Recovery as a function of fraction  n-Octane in Feed 
 
    
 

A Spreadsheet Solution Using “Controlled  Integration[6] ” 
 
The   author’s spreadsheet solution was modified by adding a fourth differential equation 
 dT/dt = Kc * eps in place of the DMM routine.   The dydx routine was replaced by the one in Figure A8 
to allow integration with “controlled integration”. Thus, the bubble point temperature is determined  by 
this differential  equation rather than by the DMM function.  Figure VI is plot of the still temperature vs. 
time and Figure VII is a plot of x1 and x2 vs. time resulting from “controlled integration”. 
 
 The shapes of T vs. time and x1, x2 vs. time compares well with this author’s VBA solution 
(Figure IV) rather than with the shape presented in Figure II by the authors[1].  It was found that, a small 
value of Kc (2 rather than 1000) and a step size of 33.67 sec (to end up at 2000 sec) was 
needed to achieve stability.  The numerical output at 2000 sec compared very well with that obtained by 
the VBA solution ( Table VI). 
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                  Figure VI  Temperature vs. Time Using  “controlled integration” 
 
                   
 

 
 
 

      Figure VII  x1 and x2 vs. Time Using “controlled Integration” 
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                                      Table VI  VBA solution vs. “Controlled Integration” 
                                                 solution on a Spreadsheet  
 
 
 

Conclusions 
 
The VBA solution and the POLYMATH[TM]  solution listed in Reference 3 match almost exactly for 
the heating cycle (Table II) which integrates T and Mx1.  However,  in the distillation cycle the 
POLYMATH [TM] and VBA results (Table IV) differ both in the results after 2000 sec and in the shape of the 
dependent variable values with time (Figures II and IV).  The POLYMATH[TM] solution uses “controlled 
integration” [1] with  Kc = 1000. This requires [1] a “stiff “integrator (available in POLYMATH{TM} [7] ) and an 
additional differential equation, dT/dt = Kc * eps where eps is the bubble point error. The differences 
between  the  “stiff”  integrator  which integrates four equations (MW, Mx1, Mx2 and T) and  the 
classical Runge-Kutta  integrator used in the VBA solution  which integrates three equations (MW, Mx1 
and Mx2)   may cause  the differing results.    
 
Table V (% Recovery of n-octane when x1(dist)= 0.90) shows that the differences between the VBA 
solution and the MATLAB® solution are not large.  These differences may result  from  interpolation 
errors in the VBA solution and/or  equation solving errors in MATLAB® . 
 

Comparison VBA vs. "Controlled 
Integration"   

     Spreadsheet Solutions 
 At 2000 Sec        X10 = 0.725 h = 33.6722   

   Variable           VBA "Controlled   

  
Integration" 

  
    Kc = 2 

MW 0.01703 0.01703 

Mx1 2.00E-06 2.00E-06 

Mx2 0.00074 0.00074 

Deg C 96.728 96.719 

x1 0.002 0.002 

x2 0.998 0.998 

y1 0.001 0.001 

y2 0.0843 0.0843 

x1(dist) 0.763 0.763 

x2(dist)   0.237 0.237 

yw 0.915 0.914 

eps 4.00E-07 0.0002 

%Recovered 99.98401 99.98411 

Q 75.3123 75.3054 
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This author was successful in generating a “controlled integration” solution for the distillation cycle with 
a value of Kc = 2. The solution matched the VBA distillation solution almost exactly. The integration was 
carried out with a Runge-Kutta routine and the average value of eps was 0.0053. This suggests that the 
need for a large value of Kc (with the need for a “stiff” integrator)  was not needed. It is unknown if this 
results can be generalized. Setting Kc = 1000 caused the Runge-Kutta integrator to “blow up”. 
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Private Function DMM(MX1, MX2, prm) 
' Given MX1 and Mx2  find the Temp (TK) that satisfies 1-y1-y2-y3 = 0 (bubble pt) 
 
' Prepare for Newton Method 
 
Dim X1, X2, P As Single 
Dim TC, TK, TKnew As Single 
Dim Y1, Y2, YW, FOX As Single 
 
Dim FOXP, DY1, DY2, DYW As Single 
Dim DERY1, DERY2, DERYW  As Single 
Dim V1, V2, VW, NCOUNT, ITER As Single 
 
X1 = MX1 / (MX1 + MX2) 
X2 = MX2 / (MX1 + MX2) 
 
P = prm(10) 
 
TC = prm(12) 
TK = TC + 273.15 
  
NCOUNT = 0 
ITER = prm(13) 
  
Q1: 
  
'  Start of Loop 
 
 NCOUNT = NCOUNT + 1 
 If NCOUNT > ITER Then MsgBox " MORE ITERATIONS THAN PRM(13) in DMM" 
 If NCOUNT > ITER Then Exit Function 
  
   
' Evaluate Bubble Point at TK 
 
V1 = 96.084 - 7900.2 / TK - 11.003 * Log(TK) + 0.0000071802 * TK ^ 2 
V2 = 112.73 - 9749.6 / TK - 13.245 * Log(TK) + 0.0000071266 * TK ^ 2 
VW = 73.649 - 7258.2 / TK - 7.3037 * Log(TK) + 0.0000041653 * TK ^ 2 
 
Y1 = (X1 / P) * Exp(V1) 
Y2 = (X2 / P) * Exp(V2) 
YW = (1 / P) * Exp(VW) 
 
'Evaluate FOX (f(x)) 
 
FOX = 1# - Y1 - Y2 - YW 
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If Abs(FOX) >= 0.000001 Then GoTo Q2: 
 
DMM = TK 
 
Exit Function 
 
Q2: 
 
' Evaluate FOXP  (f'(x)) 
 
DERY1 = Exp(V1) * ((7900.2 / (TK ^ 2) - 11.003 / TK + 2 * 0.0000071802 * TK)) 
DERY2 = Exp(V2) * ((9749.6 / (TK ^ 2) - 13.245 / TK + 2 * 0.0000071266 * TK)) 
DERYW = Exp(VW) * ((7258.2 / (TK ^ 2) - 7.3037 / TK + 2 * 0.0000041653 * TK)) 
 
 
DY1 = (X1 / P) * DERY1 
DY2 = (X2 / P) * DERY2 
DYW = (1 / P) * DERYW 
 
FOXP = -(DY1 + DY2 + DYW) 
 
' Newton's method 
 
TKnew = TK - FOX / FOXP 
 
TK = TKnew 
 
GoTo Q1: 
 
End Function 
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