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Macroscopic and Microscopic

Macroscopic laws originate in molecular nature of matter

— Many interesting behaviors owe to the existence of molecules
* Phase transitions, mixing, heat conduction, viscosity, reactions, etc.

Thermodynamics and continuum mechanics do not need to
acknowledge molecules to be useful

— Provides exact relations between changes in observables

— Formalism for characterizing thermal behavior and conservation laws

There Is a cost to abandoning the molecular view
— No predictive power

— Takes time to form some intuition
 What is entropy? What is viscosity? What are rate constants?

Purely macroscopic view insufficient for many emerging
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Molecular Simulation

o Application of computers to calculate properties of materials
defined in terms of a molecular model

e Emergent behavior
— Molecular simulation is a hybrid of theory and experiment
— Detailed behavior remains fully accessible

 Suitable as a tool for education
— Instructional technology enhances student learning
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Molecular Simulation as a Teaching Tool

« Molecular simulation provides a virtual laboratory for
molecular mechanics
— Physically accurate (for the choice of molecular model)

e Many interesting, nontrivial behaviors can be demonstrated

— Open ended
— No simple underlying model that directly programs behavior

e The molecular picture is completely accessible

— Possible to observe how a macroscopic outcome results from
collective molecular actions

e Quantitative measurements can be taken

— Molecular behaviors analyzed with tools of thermodynamics and
continuum mechanics
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Piston Cylinder Apparatus

» Prototype for interactive molecular simulations as a teaching
tool
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Problems and Activities

« Measure EOS for each potential: ideal gas, repulsion,
attraction

e Fit EOS data to a thermodynamic model. Explore relation
between molecular and thermodynamic model parameters

e Evaluate virial coefficients from EOS data

e Devise an experiment to measure the heat capacity of the
system

* Observe VLE and criticality

o Demonstrate reversible vs. irreversible processes




Obstacles 1.

o Educational activities must focus on the use of simulation,
not its development
— Don’ t bog students down in complex coding tasks

« Simulations should be interactive and graphically-oriented
— Manipulate in real time, like an experiment

* Results should be readily accessible and amenable to post-
simulation analysis
— Like an experiment

« Simulations need to be presented as a complete, fully-
functional integrated package
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Obstacles 2.

Broad range of application areas
— Chemical thermodynamics
* Boiling, freezing, miscibility, self-assembly, osmosis, etc.

— Transport phenomena
« Heat transfer, diffusion, sound, viscosity,...

— Kinetics
« Chemical reactions, polymerization, nucleation,...

— Materials science
» Elasticity, strength, electronics, photonics,...

— Biology

« Protein folding, ion channels,...

No single person can develop simulations to encompass all
the potentially relevant phenomena
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Obstacles 3.

Graphical programming is a tedious skill that few researchers
otherwise need

— Most content experts cannot develop graphical tools

Educationally effective graphically-oriented simulations are
difficult to develop

— Pedagogical skill varies among practitioners
— Interest and/or skill to do assessment is not widespread

In summary

— A broad range of people are needed to cover the breadth of application

— The skills needed to develop effective modules are not found among this
same group

Also are obstacles that confront research applications
— Accessible length and time scales
— Long CPU time needed to gather some types of results

— Accuracy of molecular model
% UNIVERSITY AT BUFFALD
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Module Development Project

A community effort to develop molecular simulation
teaching modules

Solicit short proposals for module designs from the
science/engineering community at large

Select several from this pool

Develop modules
— We produce graphical-oriented molecular simulation
— Module consultant produces background documentation

Aim was to produce 12 modules in this manner

Assess effectiveness of the modules
— Involve multiple groups

Supported by NSF CCLI grant gy s e

State University of New York




Definition of “Module”

* Interactive, graphically oriented molecular simulation

« Supporting material to help instructor and student to use
module
— Introduction, describing physical ideas
— Background, containing technical information
— Examples, with step-by-step instructions on use of simulation
— Problems, relevant to module for assignment by instructor
— Instructor Material, describing particular points or caveats

— Assessment Material, to be completed by student and/or instructor
for use in formative and summative evaluations

— Simulation Instructions, giving details on how to set up and run
simulation in various ways, with source code to permit modification

* Hosted on a wiki to facilitate editing by community

UNIVERSITY AT BUFFALOD
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Module Consultant Responsibilities

Generate general idea for the module (via a proposal)

Specify all aspects of the simulation (in consultation with simulation
developers, as needed)

Prepare all supporting materials (excluding general assessment
material, and simulation instructions)

Prepare assessment material specific to the module (in consultations
with pedagogy expert, if needed)

Use and assess simulation module in a course setting, and report results
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Molecular Dynamics

* J. Richard Elliott, Akron
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Walkthrough of Basic Features (DMD)

« Control buttons below display
 Sliders and entry box, mouse control
« Adiabatic and isothermal operation

e Configuration display
— Image shells, boundary view, overlap images

— 3D: rotation (mouse and keyboard), translation (right-click), zoom
(shift-drag, +/-), home

e Detachable tabs
o Graphs

— Autoscale, zoom, context menu, data dump

* Resizable application window
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o Sohail Murad, Illinois-Chicago
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« Jochen Autschbach, University at Buffalo (Chemistry)
— Experiments measure virial coefficient of CO,
— VLE simulation of phase coexistence of model fit to data
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Polymerization Reactions

« William Chirdon, Louisiana-Lafayette
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POLYMERIZATION SIMULATOR

For Introductory Polymer and
Material Science Courses

WirLiam M. CHigDON

University of Louisiana at Lafayette * Lafavette, LA 44130

ne of the fundamental challenges in teaching a poly-
mer science course is o develop the student’s intu-
ition regarding how this class of materials behaves.
Professors often describe polvmers as entangled masses of
spagheiti or kite siring o explain the unigue behavior of poly-
mers The reason this i enmmon v dose is that iF stdents can

type. A sinichiometric reaction at high conversion will result
in long polymer chains of alternating monomer types. A clas-
sic example of this reaction is the synthesis of polyester from
& monomer with two alcohaol groups and a second monomer
with two carboxylic acid groups. Modeling the kinetics of the
molecular weighi develomment does not reouire knowine the
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e Heath Turner, Alabama

File Help
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* Redhouane Henda, Laurentian University
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Deforming Nanodrops

 Ludwig Nitsche, Illlinois-Chicago
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e Dan Lacks,

File Help
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« Ken Benjamin, South Dakota School of Mines

0o Catalysis Application Windo
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Interfacial Colloid Brush

» Alberto Striolo, University of Oklahoma

Ao Colloid
File Help
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« Lew Wedgewood, Illinois-Chicago

Mo Palymer Rheology ;
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o Lev Gelb, University of Texas-Dallas
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Module Activities

o 2007 ASEE Chemical Engineering Summer School

— 2 hands-on workshops, about 15 participants each

— Led to use of Piston-Cylinder module at Maryland-Baltimore County, Fall
2007 (Mariajosé Castellanos)

o CCLI Pl workshop, August 2008

o Tutorial session conducted during FOMMS 2009
— 60 registrants

 Article in Chemical Engineering Education by W. Chirdon

e 2009 Interdisciplinary Conference on Chemical, Mechanical and
Materials Engineering

— Avrticle in Aust. Inst. of High Energetic Matls. by R. Henda

e Many undocumented uses in classroom by instructors worldwide

UNIVERSITY AT EUFFALD
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e Conducted by George Bodner and Phil McLaury (Purdue)

e Sites

— UBMC, Akron, Michigan State, Buffalo, Louisiana-Lafayette, Case
Western, lllinois-Chicago (on-site), Oklahoma (Thailand), South
Dakota School of Mines, Alabama

UNIVERSITY AT EUFFALD
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Likert-scale Responses

« Strongly positive in responses to questions that dealt with
— Ease of operation of the simulation
— Quality of instruction
— Simulation itself

o Strongly positive in questions that probed whether the
simulations enhanced their understanding of material
— Learning, visualization, improve previous learning, new insights
— Simulation as a valuable use of their time

 Neutral toward the amount of time the simulation took

UNIVERSITY AT EUFFALD
State University of New York -
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Likert-scale Responses

 Attitudinal responses

— Simulations well designed, a valuable experience, good way to learn
new concepts

— Neutral about reliability of simulation versus conventional
experiments

UNIVERSITY AT EUFFALD
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Open-ended Responses

* Need for changes to modules
— No changes needed (n=6)
— More user friendly or easier to operate (n=14)
— Produce results in less time (n=6)
— Add more visualization capabilities (n=5)
— Define parameters (n=5)
— More discussion in advance (n=6)
— Interface to Office software (spreadsheets) (n=4)

 How many simulations would be appropriate for a course?
— 1to 5 (n=28)
— Complaint about time required for simulation

UNIVERSITY AT EUFFALD
State University of New York -
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Assessment Summary

 Students positively inclined to molecular simulation

 Students feel that simulations helped them visualize
molecular processes

 Students feel that simulation was easy to use

 Students concerned about amount of time required to
generate usable results

* Modules potentially useful to instructors
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Future Developments

o Community based approach is effective
* Would like to develop modules that can be used as a tool for
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* Molecular simulation modules have been developed based
on ideas solicited from the community

 Modules comprise
— Graphically-oriented molecular simulation developed by us
— Supporting materials prepared by proposer of module

e Full list of modules available at etomica web site
— modules.etomica.org
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Polymerization - Concepts

o Stepwise growth vs. free radical
» Growth kinetics

* Molecular weight distributions, polymer structures
e Gelation

e Models
— Reactive SW atoms

38
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Stepwise Growth Polymerization
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Stepwise Growth Polymerization
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Phenomena of Interest

End-capping effect of mono-functional groups

Stoichiometric imbalance

Molecular weight increase, branching

Gelation

Requires average functionality f > 2 /

—-1/2
Critical conversion for gelation p = (f— 1)
Example

@ 700

@ 400

@ 200
- f =215
. p,=0.93

Increase reaction energy to 40 kJ/mol, observe temperature

G5
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Free-Radical Chain Addition

e Monomer
— @ Unreacted
— @ Activated
— (O Reacted

 [nitiator * No chain decomposition

— @ Unactivated — Irreversible
— @ Activated

* Elementary reactions
Initiator activation

Initiation
Propagation

Termination by disproportionation

Termination by combination
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