

3D Printing & Arduino in the ChE Classroom:

Protein Structures, Heat Exchangers, and Spectrophotometers

Jacob Elmer & Daniel Kraut

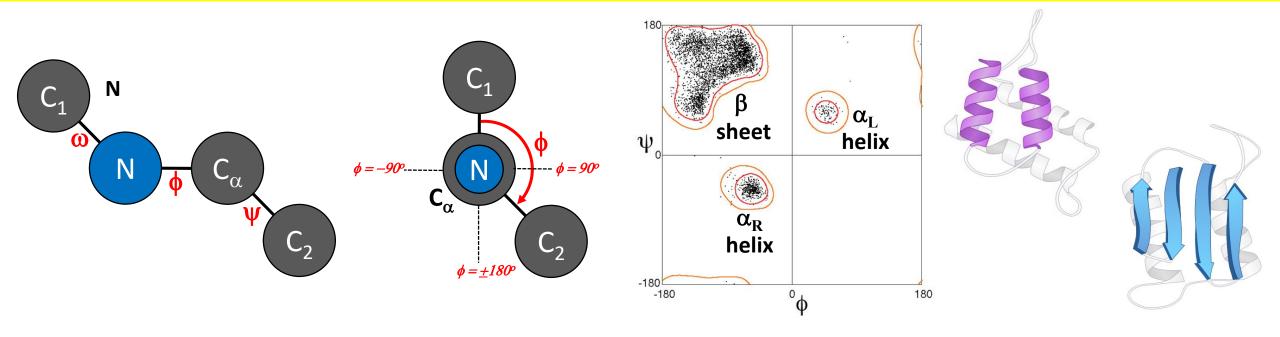
Villanova University

6/25/18

Goals

ChE students may complete several design simulations/projects, but they rarely get a chance to design and build prototypes.

3D Printing & Arduino/Pi make it easy & cheap to build prototypes.


Goal 1: Enhance student learning.

Goal 2: Introduce students to drafting, coding, etc.

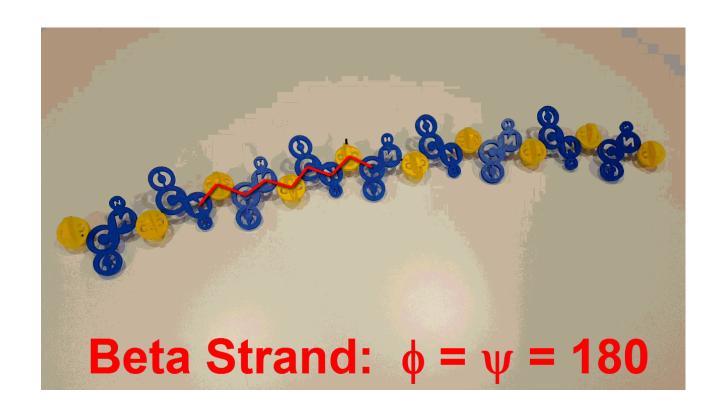
Goal 3: Give the students an opportunity to be creative!

Module 1: Dihedral Angles in Proteins

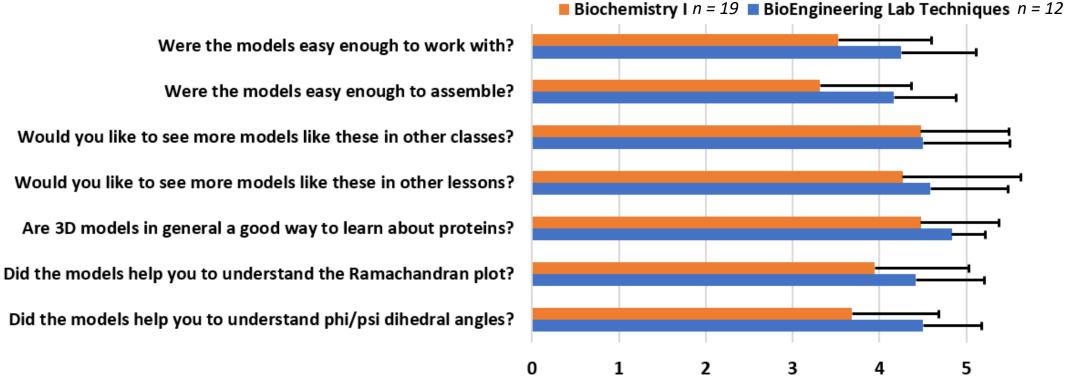
Students do not need to know CAD or coding for this module - they just play with 3D printed parts!

- The peptide backbone in a protein has 3 unique dihedral angles: ω , ψ , and ϕ
- ω is fixed, but ψ and ϕ can rotate between 0-180°
- Steric hindrance makes some angles more favorable
- Some angles provide unique 2' structures α helices + β strands

3D Printing Proteins



- Tripeptide = Gly-Ala-Gly
- 26 atoms
- 7 unique pieces
- 14 parts
- Parts connected by tubing
- Dials show dihedral angles
- 2 pieces for tetrahedrons
- Peptide bond is planar


Note: Additional side chains can also be included.

Activity 1: Ramachandran Plot

Activity 2: α helices + β sheets

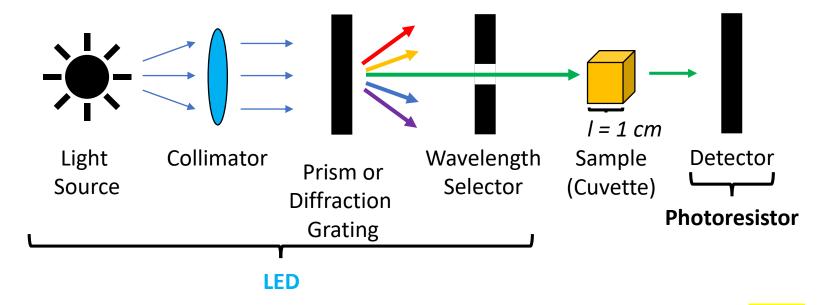
Student Feedback

Likert scale, 1 = Strongly Disagree/No, 2 = Disagree/No, 3 = Neutral, 4 = Somewhat Agree/Yes 5 = Strongly Agree/Yes

Student Comments:

- Assembly
 - Joints were a little hard to work with, models could be assembled incorrectly
- Timing
 - Need more time for assembly, maybe send a kit home for review?

Module 3: DIY Spectrophotometer (Colorimeter)


Freshman Interdisciplinary Engineering Design Course (EGR 1200)

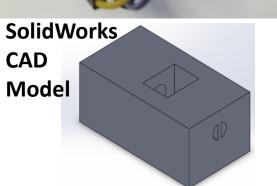
Spectrophotometers are commonly used to measure concentrations, enzymatic reaction rates, etc.

Unfortunately, they can also be quite expensive (>\$1,000)......

However, spectrophotometers are based on a relatively simple principle:

If you only need to measure a specific wavelength (e.g. 420 nm for ONP), then this design can be simplified by just using a (blue) LED as a light source and photoresistor as a detector.

Device Design

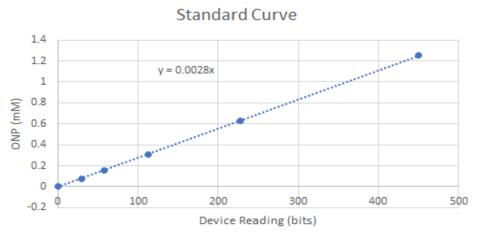


Arduino IDE Code

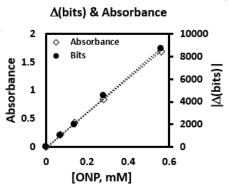
PR

 330Ω 5VGround $10k\Omega$ PR A0 (Arduino)

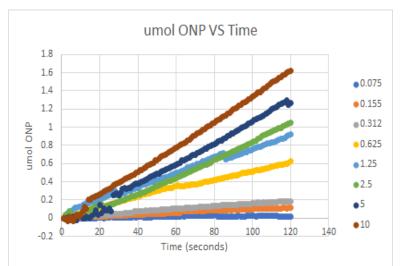
This is a minimal design that students are allowed to modify.

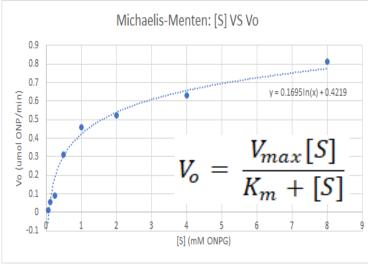

Most groups add covers for the cuvette Some groups make enclosures for the circuit

One group designed a device that could monitor 2 cuvettes!


Standard Curve:

O-nitrophenol (ONP)




Trends obtained with the devices are identical to a commercial spectrophotometer

β-galactosidase Reaction:

Enzymatic conversion of ONPG → ONP

The device detects changes in reaction rates (V_o) from varying substrate concentrations, which can then be used to prepare a Michaelis-Menten plot

$$V_{\text{max}} = 138 \pm 25.1 \frac{\mu mol \ ONP}{min \cdot mg \ \beta gal}$$

$$V_{\text{max}} = 134 \frac{\mu mol \ ONP}{min \cdot mg \ \beta gal}$$

$$K_{\text{m}} = 0.92 \pm 0.12 \ \text{mM}$$

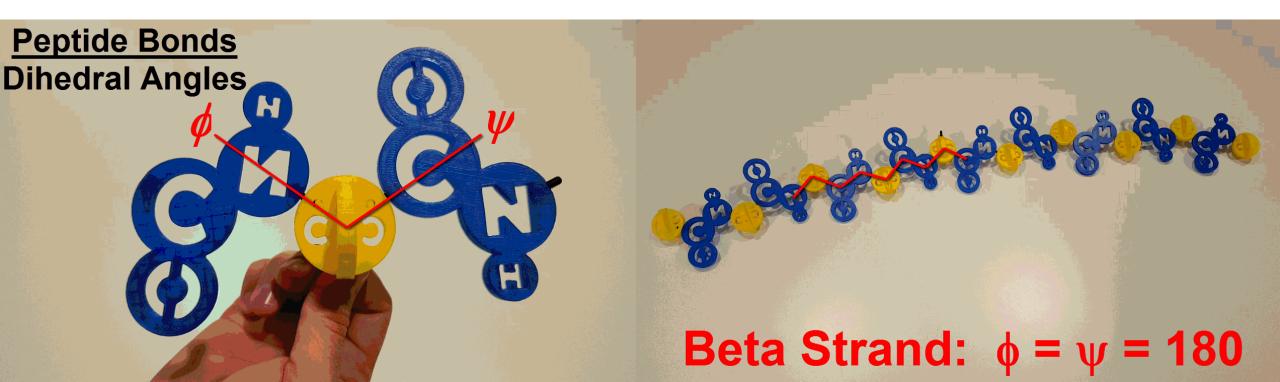
$$K_{\text{m}} = 0.95 \ \text{mM}$$

<u>Summary</u>

Module	3D Printed Parts (Thingiverse IDs)	Arduino?	Available Materials	Cost/Student
Peptides	2758246 (Tubing) 2509708 (Screws)	No	Videos PPT Slides Activities Stickers	\$1.50
Plate & Frame	2452341	Optional	PPT Slides	\$5-50 + pumps, baths
Colorimeter	2760937 (Cuvette) 2456868 (Flow Cell)	Yes	Lab Manual PPT Slides Example Data Arduino Code	\$50/device \$500 for reagents

Please contact me (<u>jacob.elmer@villanova.edu</u>) if you have any interest in using these modules.

Thank you for coming!



Acknowledgements:

Villanova University - Freshman Design Miniproject Grant George Simmons - Director of the Multi-Disciplinary Lab @ Villanova Students – William Landis, Brianna Conte, Neill Boyce, Jeffrey Neuhaus

Links + GIFs

- Amino acids with screws: https://www.thingiverse.com/thing:2758246
- Amino acids with tubing: https://www.thingiverse.com/thing:2509708
- Dihedral Demo: https://www.youtube.com/watch?v=1usemtlYe_s (3213 views!)
- α/β Demo: <u>https://www.youtube.com/watch?v=4x61Je8UWsE</u> (314 views...)
- 3D CAD Protein models: https://3dprint.nih.gov/create
- Magnetic models: https://makezine.com/projects/peppytides/

Parts + Links

• CAD + STL files:

- Cuvette holders: https://www.thingiverse.com/thing:2760937
- Flow cell: https://www.thingiverse.com/thing:2456868

Other colorimeter designs:

de L. M. de Morais C, Carvalho JC, Sant'Anna C, Eugênio M, Gasparotto LHS, Lima KMG. A low-cost microcontrolled photometer with one color recognition sensor for selective detection of Pb ²⁺ using gold nanoparticles. *Anal Methods*. 2015;7(18):7917-7922.

Davis EJ, Jones M, Thiel DA, Pauls S. Using Open-Source, 3D Printable Optical Hardware To Enhance Student Learning in the Instrumental Analysis Laboratory. J Chem Educ. 2018;95(4):672-677.

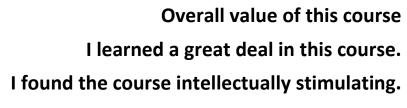
Kelley C, Krolick A, Brunner L, et al. An Affordable Open-Source Turbidimeter. Sensors. 2014;14(4):7142-7155.

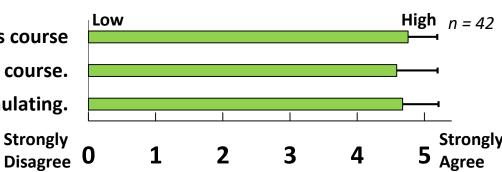
Kitson PJ, Rosnes MH, Sans V, Dragone V, Cronin L. Configurable 3D-Printed millifluidic and microfluidic "lab on a chip" reactionware devices. Lab Chip. 2012;12(18):3267.

Anzalone G, Glover A, Pearce J. Open-Source Colorimeter. Sensors. 2013;13(12):5338-5346.

Wittbrodt BT, Squires DA, Walbeck J, Campbell E, Campbell WH, Pearce JM. Open-Source Photometric System for Enzymatic Nitrate Quantification. Hong Y, ed. PLoS One. 2015;10(8):e0134989.

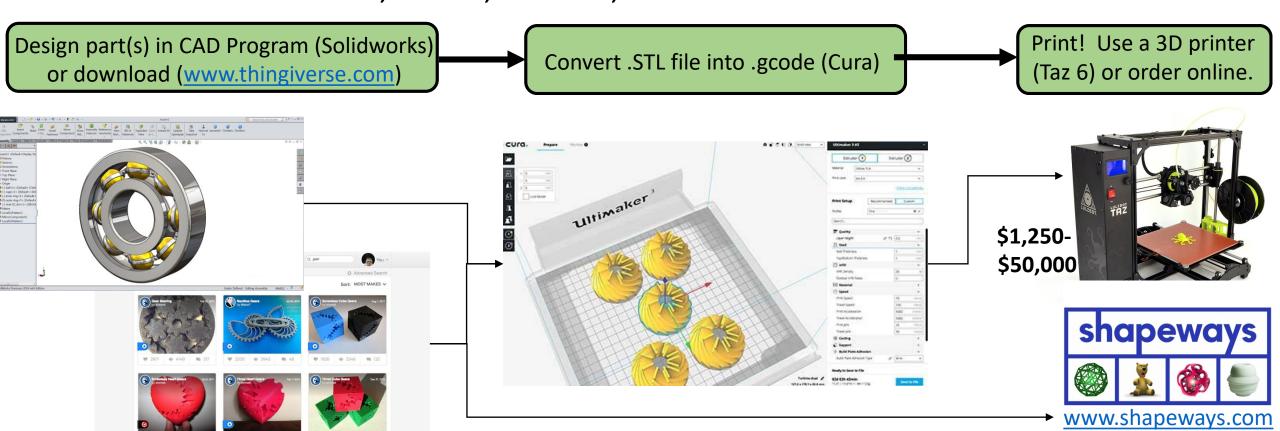
Porter LA, Chapman CA, Alaniz JA. Simple and Inexpensive 3D Printed Filter Fluorometer Designs: User-Friendly Instrument Models for Laboratory Learning and Outreach Activities. J Chem Educ. 2017;94(1):105-111.

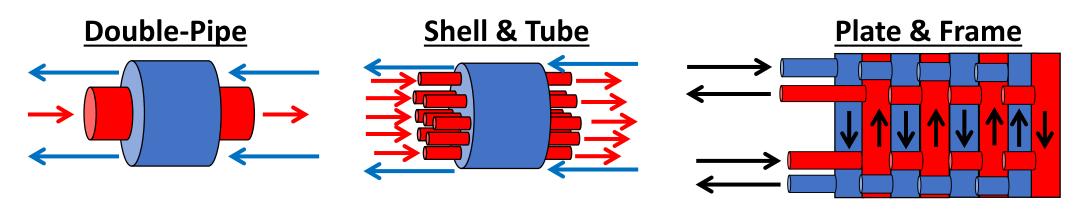

Grasse EK, Torcasio MH, Smith AW. Teaching UV–Vis Spectroscopy with a 3D-Printable Smartphone Spectrophotometer. J Chem Educ. 2016;93(1):146-151.


Student Survey Results

0-5 scale

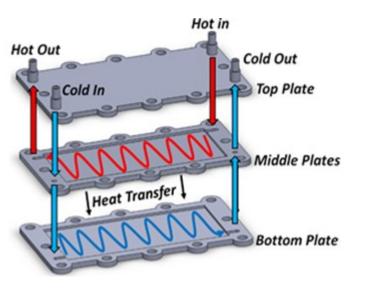
0 = strongly disagree


5 = strongly agree

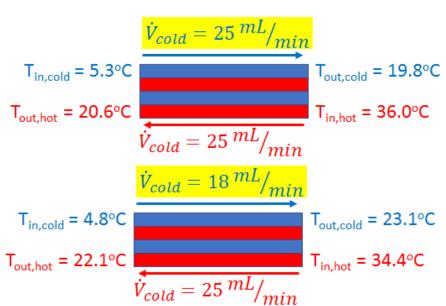


3D Printing Primer

- 3D Printing is now easier, cheaper, and faster than ever
- Make/download a part, convert it into G-Code, and print it yourself/online
- Online tutorials are available for every step
- Parts can be hollow, metal, flexible, etc.

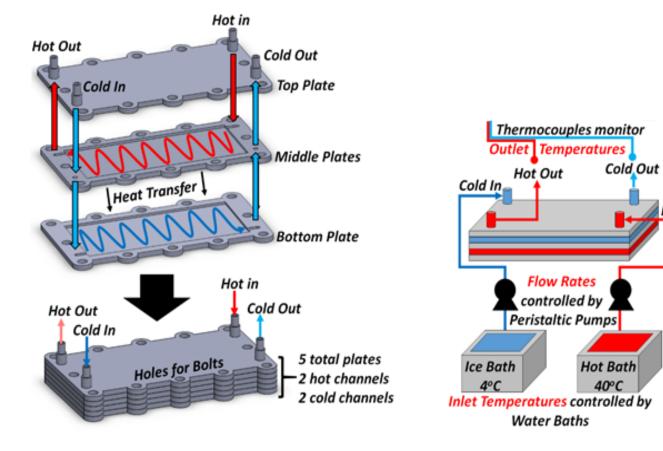


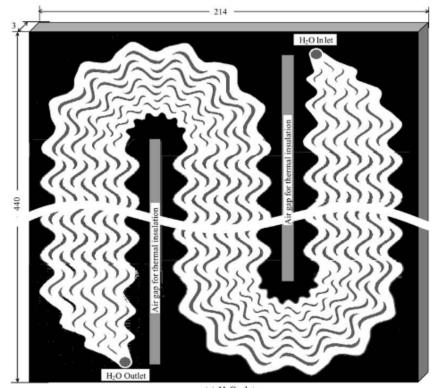

Module 2: Plate & Frame Heat Exchanger



Our Heat Transfer course had a heat exchanger design project, but no lab component...

..so I introduced an Honors design project on 3D printing a Plate & Frame heat exchanger:





Parts + Links

- Plates (top, middle, bottom): https://www.thingiverse.com/thing:2452341
- Vacuum-formed Heat Exchanger
 - https://www.ijee.ie/latestissues/Vol33-2A/22 ijee3409ns.pdf

Ngo TL, Kato Y, Nikitin K, Tsuzuki N. New printed circuit heat exchanger with S-shaped fins for hot water supplier. Exp Therm Fluid Sci [Internet]. 2006 Aug 1 [cited 2018 Jan 17];30(8):811–9.