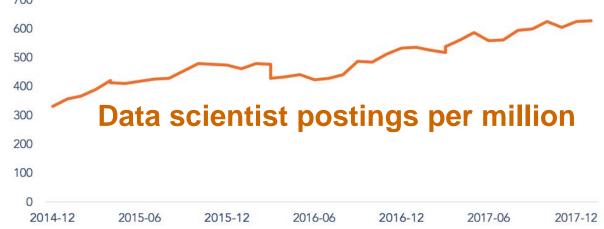

Data Science Education Using Real Data


Demand for Data Analytics Expertise

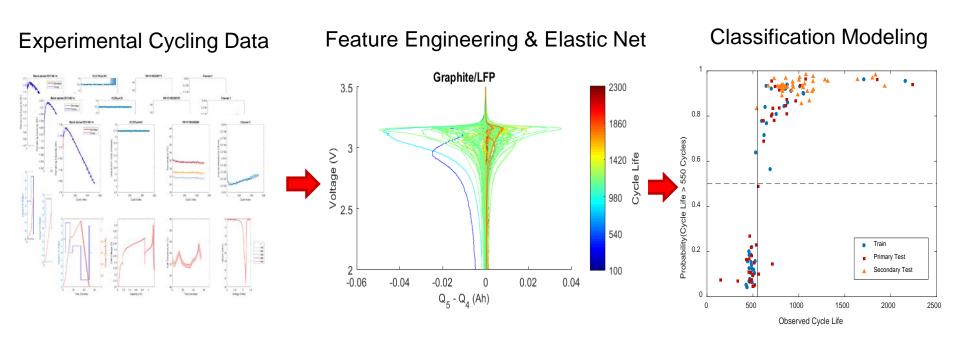
 Companies are using data to streamline operations, improve reliability, optimize processes

 Enabled by huge increases in data and reductions in computer costs

 All graduates should learn data analytics

The Importance of Authentic Data

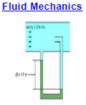
 To produce graduates who excel at data analytics, activities must allow students to practice

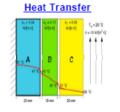


• Real data allows the experience to be *authentic*, so that students buy in and connect to the real world

Authentic Dataset: Lithium-ion Batteries

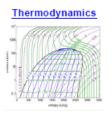
- Operational data for 50 commercial batteries from commercial cycler
- Can be used for modeling, prediction of battery cycle life
- https://github.com/petermattia/battery-parameter-spaces

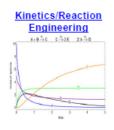



Will soon build a large public biomanufacturing dataset

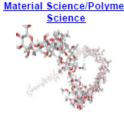

Teaching Resources in Statistics

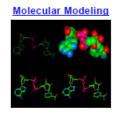
Intro to Chemical Engineering


Material/Energy Balances









Teaching Topics

cache.org

syllabi, schedules, computer-aided tools, interactive simulations, screencasts, concept questions, textbook information, useful links, course notes

Sampling of Data Education in ChE Curricula

- Undergrad data education ranges from
 - A few lectures in some chemical engineering course(s)
 - 3.5 weeks in a chemical engineering course
 - Statistics and probability course taught by statistics/math faculty
 - Engineering statistics taught by a non-ChE engineer
 - Engineering statistics course taught by ChE faculty
- Graduate data education ranges from
 - None
 - Elective courses
 - Part of required courses

- Universities sampled
 - University at Buffalo
 - University of Texas Austin
 - University of Massachusetts, Amherst
 - Massachusetts Institute of Technology
- A good coverage of different amounts and approaches used in ChE curricula

- University at Buffalo, 14 weeks to juniors
- Lecturer: David A. Kofke (ChE)
- William Navidi, Statistics for Engineers & Scientists
- Sampling and descriptive statistics, probability, error propagation, common distributions, confidence intervals, hypothesis testing, factorial experiments

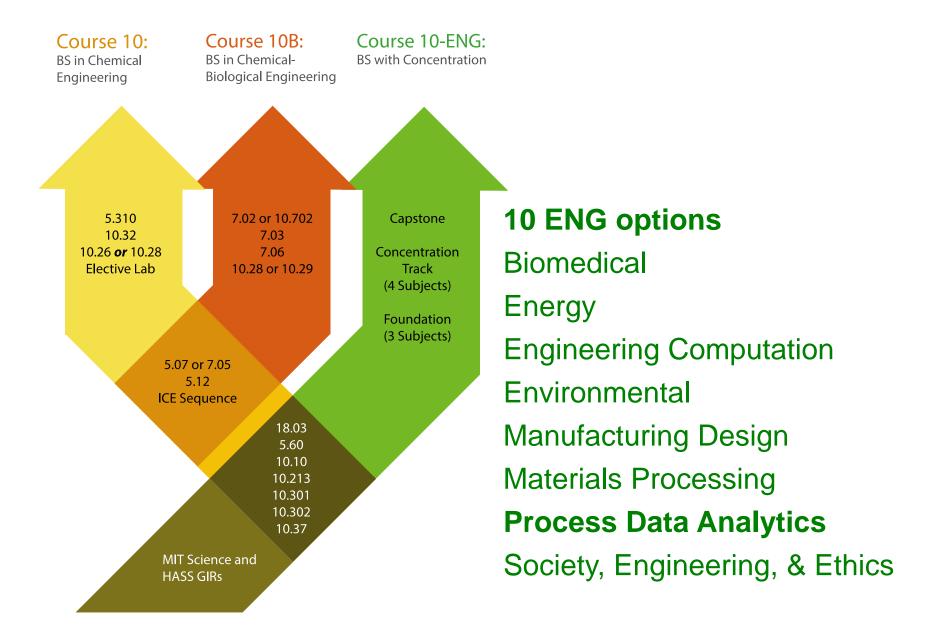
- University of Texas Austin, 16 weeks to juniors
- Lecturer: Keith Friedman (ChE)
- R.A. Johnson, Statistics & Probability for Engineers
- Linear regression, JMP, simple distributions, confidence intervals, hypothesis testing, ANOVA, design of experiments, statistical process control
- Taught by ChE lecturer

- University of Massachusetts, 3.5 weeks to juniors
- Lecturer: Michael A. Henson
- Erwin Kreyszig, Advanced Engineering Mathematics
- Probability distributions, confidence intervals, hypothesis testing, regression and correlation, factorial and fractional factorial experimental design, Matlab statistics

- Massachusetts Inst. Tech., small number of lectures to seniors in design and project courses
- Lecturers: numerous
- No textbooks
- Laboratory kinetic data and curve fitting

- MIT, 3 weeks (9 hours) to all graduate students
- Lecturers: Richard D. Braatz and James W. Swan
- Electronic lecture notes
- Probability theory, stochastic differential equations, parameter estimation, Monte Carlo methods, stochastic chemical kinetics
- Clear that most entering students do not have a basic understanding of probability and statistics

- MIT, 3.5 weeks (10 hours) to most graduate students
- Lecturer: Richard D. Braatz
- Electronic lecture notes
- Statistical and model-based iterative experimental design, linear and nonlinear regression (parameter estimation), uncertainty quantification, control charts, chemometrics for sensor calibration and process monitoring, machine learning for construction of sparse models


- Main goal: train students to be effective in translating data into making good decisions
 - Experimental design ⇒ generate data so that the model will be good enough
 - Linear/nonlinear regression ⇒ models for design & control
 - Uncertainty quantification ⇒ is the model good enough?
 - Chemometrics ⇒ handling correlated data

- Main goal: train students to be effective in translating data into making good decisions
 - Statistical process control ⇒ does data indicate that the process is under control?
 - ⇒ which variables are likely associated with the fault?
 - ⇒ how do classify new data based on historical data
 - Chemometrics (i.e., principal component analysis, partial least squares) and Fisher discriminant analysis
 - Machine learning for construction of sparse models, e.g.,
 sparse vs. dense models, lasso & elastic net methods

Data Education in a Graduate ChE Curriculum: Sensor Calibration, Regression, Uncertainty Quantification

- Start with relating spectra to concentration
- Do linear and nonlinear least squares for constructing algebraic sensor calibration curves, using summation notation and matrix algebra
- Statistical process control: Shewart, CUSUM, EWMA, PCA-based T², 1D/2D contribution plots
- Do chemometrics for handling correlated data
- Do parameter estimation for nonlinear dynamic models, quantify uncertainties in parameters

A ChE Specialization in Process Data Analytics

