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Why data science for ChemE?



Data Science for ChemE!

How do we bring data science to ChemEs?
Education



History of data science @ UW

2008 • “Big Data” is a common 
buzzword

• Beyond “big” data
• Complex data sets
• High ‘velocity’ data
• Veracity

• Something was 
missing…  
• What to do with the 

data?



History of data science @ UW

2008 • Many groups on the 
UW campus had data 
sets that were posing 
challenges

• How to extract 
knowledge and 
actionable information 
from these data?



History of data science @ UW

2008
• Convened groups from 

across campus to move 
beyond “big data” and 
into data driven modes 
of thinking (i.e. data 
science)

• Education

• Research

• Community of 
practice



History of data science @ UW

2008 • Core skills (i.e. data science):



History of data science @ UW

2008 • Core skills (i.e. data science):
• Data management

Relational databases (SQL) High volume streaming data

Data parallel computation



History of data science @ UW

2008 • Core skills (i.e. data science):
• Data management
• Statistics

Wikipedia



History of data science @ UW

2008 • Core skills (i.e. data science):
• Data management
• Statistics

Multiple hypothesis testing problem

From spurious correlations web site



History of data science @ UW

2008 • Core skills (i.e. data science):
• Data management
• Statistics
• Machine Learning

www.slideshare.net/awahid



History of data science @ UW

2008 • Core skills (i.e. data science):
• Data management
• Statistics
• Machine Learning
• Visualization

circos.caLLNL
forbes.com



History of data science @ UW

2008 • Core skills (i.e. data science):
• Data management
• Statistics
• Machine Learning
• Visualization
• Software Engineering

Version control
• Use cases & design
• Testing & verification
• Programming style
• Documentation

Manuscript = Patent = Software = Dataset



History of data science @ UW

2008 • Core skills (i.e. data science):
• Data management
• Statistics
• Machine Learning
• Visualization
• Software Engineering



ChemE @ UW gets into data 
science education

• 2013 IGERT-CIF21: Big Data U: A Program for 
Integrated Multidisciplinary Education and 
Research for Big Data Science, #1258485
– Astronomy, Biology, Chemical Engineering, 

Computer Science, Oceanography, Statistics

– IGERTs directly funded graduate student trainees

– Goal: Create ! shaped scientists and engineers!
Data 
science

Chemical 
Engineering



• 2013 IGERT
• Students need to take 3 out of 4 core courses in 

methods
– Statistics (STAT 509 or STAT 512-513)

– Machine learning (CSE 546 or STAT 535)

– Data management (CSE 544)

– Data visualization (CSE 512)

• Participate in Data Science Community Seminar 
(CHEME 599)

• Data science lunch program
Cohort building 

activities

ChemE @ UW gets into data 
science education

*500 level classes 
are graduate 
classes @ UW



• 2013 IGERT
• Departments can offer “transcriptable

options” that add on to their degrees, e.g.
PhD in Chemical Engineering with Advanced 

Data Science Option
• Process:
– Departmental faculty vote to add an option
– Graduate school reviews option with input from 

campus, e.g. eScience Institute

ChemE @ UW gets into data 
science education



• 2013 IGERT
• 2015 UW graduated the first Advanced Data Science 

Option (ADSO) student…

Chemical Engineering!
• Signals from this first student:
– She completed the ADSO without receiving IGERT funding

– She landed her “dream job” as a data scientist in a synthetic 
biology company

– San Francisco company created an office in Seattle 
specifically to build a data science team

ChemE @ UW gets into data 
science education



• Lessons learned from the Advanced Data 
Science Option in ChemE
– Statistics grad level classes are HARD
– CSE grad level machine learning is even HARDER
– Not really available to our MS students
– 14+ ADSO offering units on campus (now), classes are highly 

subscribed and often wait listed
+ There is demand from students for these skills
+ They want to participate even without fellowships
+ Employers really want our grads with data science skills
+ Cohort based learning works for data science

ChemE @ UW gets into data 
science education



• 2016 NRT-DESE: Data Intensive Research Enabling 
Clean Technologies (DIRECT), #1633216
– PI: Jim Pfaendtner (ChemE)

– ChemE, Chemistry, Materials Science & Engineering, 
Molecular Science & Engineering program (2019)

– NSF NRT is less about directly funding students and more 
about creating programs

– Build a broadly accessible graduate data science education 
environment with a focus on clean energy / clean tech

ChemE data science for all



Goals of DIRECT 

• Students should be fluent in data science 
methods, best practices and tool development
– E.g. they need to know how to choose a neural 

network architecture (FF ANN, RNN, CNN) but not 
how to derive a variable learning rate optimizer

– E.g. they need to know how to use database query 
languages, but now how to build query planners

– E.g. they need to know how to write software, use 
test-driven development, and perform code 
reviews but now how to build a compiler



Goals of DIRECT

• Students should be fluent in data science 
methods, best practices and tool development

• No prerequisites
• 6 month intensive experience, 3 courses, 2 qtrs.
• Use project based learning to teach:
– Software Engineering
– Statistics
–Machine Learning
– Data Management
– Visualization



Points of leverage in DIRECT

• Participating departments are molecularly 
focused
– Contextualize data science in the language of 

molecules
– E.g. talk about predicting molecular properties, 

not frenemy networks in twitter
• Use ‘cohort effect’ to enhance learning 

experience
• Active learning classrooms 



Points of leverage in DIRECT

• Participating departments are molecularly 
focused
– Contextualize data science in the language of 

molecules
– E.g. talk about predicting molecular properties, not 

frenemy networks in twitter
• Use ‘cohort effect’ to enhance learning 

experience
• Active learning classrooms 
• UW’s ‘transcriptable options’
• Huge set online learning resources for Python



DIRECT course overview

• Three courses make up the ‘Data Science Option’
– CHEME 546: Software Engineering for Molecular Data 

Scientists (SEMDS)
• Winter quarter (10 weeks)

– CHEME 545: Data Science Methods for Clean Energy 
Research (DSMCR)
• Winter quarter (10 weeks)

– CHEME 547: Molecular Data Science Capstone
• Spring quarter + Summer A-term (14 weeks)



Cohort from colearning

• SEMDS (Soft. Eng.) & DSMCER (DS Methods)

– Run concurrently

– All students take both courses at the same time

– 6 hours a week contact time with instructor

– +2 hours a week office hours with instructor & TAs

– Slack organization & channels for questions and 

student help, peer support, “clicker” in class, 

study groups, even socialization



Cohort from co-learning

• SEMDS (Soft. Eng.) & DSMCER (DS Methods)
– Run concurrently

– All students take both courses at the same time

– 6 hours a week contact time with instructor

– +2 hours a week office hours with instructor & TAs

– Slack organization & channels for questions and 
student help

– Group based project is shared across both courses



Why concurrent courses?

• Dependency graph of learning objectives

Teaching test driven development

Learning objective

Unit testing of 
functions

Coding using 
functions

Test driven 
development

Week 3Week 2Week 1

SE
M

DS

SE
M

DS



Why concurrent courses?

• Dependency graph of learning objectives
Teaching visualization in Python w/ no prereqs

Coding in 
Python

Week 3Week 2Week 1

SE
M

DS

SE
M

DS

Loading data 
into Python

Visualization in 
Python DS

M
CE

R

DS
M

CE
R

Learning objective



Why concurrent courses?

• Dependency graph of learning objectives can 
cross course boundaries

• Shortens the length of the dependency in real 
world time vs. sequential courses
– Higher retention of concepts
– Immediate practice of concept in application

• Why not one large course?
– Students arrive with different baselines
– Different courses enable differential feedback on 

strengths and weaknesses



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

AM
PM

Two courses × two 1.5 hr classes / week = 6 hrs / wk



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

AM
PM



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

AM
PM



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

Introduction to Data Science

Command line
Version control w/ git

Version control w/ GitHub

AM
PM



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCERPython data types

Python flow control
Functional programming

AM
PM



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

Problem statement to code

Python data management

Visualization in Python

AM
PM

Relational data models



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

Software licensing

Descriptive statistics & CLT
Statistical distributions

Hypothesis testing

AM
PM



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

Linear regression
Bias variance tradeoff

Unit testing & continuous integration
Documentation & programming style

Project team formation 
proceeded by Slack 
discussions and in class 
student presentations

AM
PM



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

K-nearest neighbors
Unsupervised clustering

Test driven development
Software design

AM
PM



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

Virtualization for reproducibility

AM
PM

Bootstrapping
Cross validation

Regularization



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

Python package structure & code sharing

AM
PM

Decision trees
Image analytics

Support vector methods



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

Multilayer perceptron & FF ANN
Neural network best practices

Student standups

AM
PM



Syllabus for SEMDS & DSMCER

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10

SEMDS
DSMCER

Natural language processing
Recurrent & Convolutional networks

Student standups
Student standups

AM
PM



Homework: dual task learning

• Five homework assignments for each course
– E.g. write a K-nearest neighbor classifier for 

selecting force field parameters
• All homework is submitted using GitHub
– Reinforces the usefulness of version control
– Reinforces the technical knowledge

Confidence level 0-10
using version control

Before

AfterStudents can revise 
homework source code 

for up to two weeks after 
submission



Projects for SEMDS & DSMCER

• Same project for both courses
– Differential grading rubrics
– Double student hour efforts enabling adv. projects

• Criteria for the student project
– Topic should be molecular* or clean tech focused
–Must utilize two or more non-trivial data sets
– Teams should be 4 members (3 & 5 discouraged)
– Students must use Python & software design, test 

driven development, documentation, style
– Students must use best practices for DS methods



Projects for SEMDS & DSMCER

• Projects are presented at poster session 
where all faculty, chairs, and previous student 
cohorts are invited

• E.g. posters…



Introduction

Formic Acid gasified at 400°C
Pressure held constant at 25 MPa
Residence time of Xs
Constant fedstock concentration of
15 wt%

Materials and Methods Continuing Work

Conclusions and Future Work
In conclusion our team successfully created a fast functioning open
source code base that saves hours of research time in data cleaning
and analysis of Raman Spectra. We have also set a strong base for the
next step of our focus which is on calculating decomposition of
substances using Lorentzian peak information that will be applied to
machine learning optimum temperatures and pressures in a
gasification reactor system.
Future work
This work sets up a free and user friendly platform for researchers to be
able to analyze their own Raman Spectra.

Acknowledgements
• Dave Beck, Chad Curtis, and Kelly Thornton
• Data sets were taken from publicly available from the NIST WebBook Database

and Mendeley Data, “Raman Spectra of Formic Acid Gasification Products in
Subcritical and Supercritical Water”

• Only open source packages were used in this work, documentation of all
packages used can be found at our GitHub at:

• https://github.com/raman-noodles/Raman-noodles

Goals
1. Data Mining and Baseline Subtraction

• Importing open source data sets, create a library of spectra,
uniformly format data for analysis

2. Data Visualization
• Outputting plots of baseline subtraction and peak identification

3. Machine Learning
• Prepare least squares regression model for calculating kinetic rate

decomposition at different resonance times and temperatures

Machine Learning for Material Decomposition 
• We implemented functionality to run a least squares regression

that fits Lorentzian curves to the data. The function is given the
peak locations determined using scipy.signal.find_peaks.

1. Expand software to be able to compute decomposition rates
across varying parameters such as temperature, resonance
time, possibly pressure.

2. From the defined decomposition rate the software can
predict the decomposition rates using machine learning
beyond the known data set limits

• Using data from a custom built supercritical gasification reactor on
campus to analyze formic acid Raman spectra.

• Decomposition of formic acid constitutes the combination of two
pathways:

Brandon Kern2, Elizabeth Rasmussen1,3, Jon Onorato2,3, Parker Steichen2

In-Situ Raman Spectroscopy Component Identification  for 
Machine Learning Based Decomposition Analysis

1 Department of Mechanical Engineering, 2 Department of Material Science and Engineering, 3 Clean Energy Institute 
University of Washington, Seattle, WA, USA

Photographs of UW Gasification Reactor with In-Situ Raman Probe

Results Using Experimental Data

Baseline Subtraction of Raman Signal

Component Analysis in a Mixture Raman Signal

Motivation

Water Baseline Subtraction Output Acetone Baseline Subtraction Output

Used PeakUtils built in baseline function to perform polynomial fit baseline subtraction
on NIST database spectra. Examples of this functionality are shown below.

The LMFit package was utilized to identify 5 descriptors per peak in a mixture’s Raman
signal including: location of the peak, peak height, and peak width. As a mixture has more
peaks (components from decomposition) the amount of descriptors increases.

Least Squares Model Equation

Lorentzian Equation for a Single Peak

Carbon Monoxide Spectra Lorentzian Output

Component Confidence based on Euclidean Distance
Once components in a ‘testing’ dataset
mixture are identified the next step is to take
a ‘training’ dataset location and share with
the user the Euclidean distance between the
two datasets. For this software if a peak
location is more then ±10 cm-1 from the
literature values the confidence that the peak
represents the compound is zero. This range
was set from experimental considerations.

After creating a theoretical NIST ‘training’ datasets and proving the functionality of the
code the final step was to test it on experimental data sets taken in the lab.



Model Architectures

1 Department of Chemistry, University of Washington, Seattle, WA 98195
2 Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195

Spectra Prediction for the Excitation and Emission 
of Dyes and other Conjugated Organic Molecules

Overview
SPEEDCOM is an open-source python package that uses deep learning 
methods to predict the absorption and emission spectra of small organic 
molecules.

GitHub: https://github.com/emissible/SPEEDCOM

Joe Abbott 1, Ryan Beck 1, Hang Hu 2, Yang Liu 1, Lixin Lu 1

SPEEDCOM would like the thank UW DIRECT and the Clean Energy Institute 
at the University of Washington.

Data Cleaning
To obtain the dataset used for training, the files from the database were parsed to:
● Obtain the absorption and emission spectra;
● Obtain the smiles strings for molecules using pubchempy package;
● Removing extraneous counter ions from generated SMILES strings;
● Generating descriptors using RDkit package:

○ Coulomb Matrix of nuclei
○ Morgan Topological Fingerprint 
○ Molecular Properties

Future Work
● Sanitize SMILES input; add alternative input options
● Expand database and tune parameters for more accurate models
● Include multiple features in predicted absorption/emission spectra
● Allow users to train models with their own data
● Add a feature for pipelining predictions

References
Data: PhotoChemCAD (http://www.photochemcad.com/PhotochemCAD.html)
Dependencies: Keras, TensorFlow, RDKit, Pandas, Numpy, PubChemPy (all open-source).
Publication: Garrett B. Goh et al. 2018. SMILES2vec. In Proceedings of ACM SIGKDD Conference, London, UK, Aug, 2018 (KDD 2018), 8 pages
 

Use Cases

Via a GUI, users can... 
● Input the SMILES string of a given molecule
● Visualize the 2D skeletal structure of this molecule
● Visualize and download predicted spectra and associated characteristics 

such as the quantum yield and molar extinction coefficient.

Motivations
The use of ab initio methods to calculate molecular spectra is usually 
lengthy, expensive, and may even be inaccurate depending on the choices 
for the level of theory. As such, a fast, experimental, data-derived method 
for predicting excitation and emission spectra for organic species is 
proposed to aid in rapid prediction of spectral features. This has potential 
uses in applications such as fluorophore-design.

Results & Discussion 

Metrics

● The proposed package frameworks were built successfully with intended 
functionalities and have achieved R2 > 0.7 for wavelength prediction with 
validation data

● Multidimensional property exploration was performed for the molecules 
included in the database

● The structural information encoded in SMILES/ connectivity fingerprint/ 
Coulomb matrix can be used to calculate spectroscopic properties

● The accuracies of our models are largely limited by the small size of the 
dataset, and the complexity of the problems.

● With the pre-trained models weights, the prediction speed can be guaranteed, 
while the fine-tuned accurate models still remain as biggest challenges.

Example GUI:

FP/SMILES-LTSM SMILES-Conv1D RP/CM-DNN FP-Conv1D

Left side: SMILES-Conv1D model metrics
    (top left):       predicted absorption vs. actual wavelength;    
    (bottom left): prediction error vs. actual absorption wavelength
Top right: History training loss and validation loss vs. epochs
Bottom right: testing R2 across different models with various predictors

Flatten ()

Dense(512)

Dense(512)

Dense(512)

Linear/Sigmoid

Conv1D(5-128)

Conv1D(3-128)

Conv1D(1-128)

Dense(512)

Linear/Sigmoid

Flatten ()

Embedding(42-50-279)

Conv1D(10-192)

Conv1D(5-192)

Dense(512)

Linear

Flatten ()

Conv1D(3-192)

Embedding(42-50-279)

LSTM(50)

LSTM(50)

Flatten ()

Linear

Dense(50)

LSTM(50)

Numeric encoded SMILES/
Morgan Fingerprint Numeric encoded SMILES RDkit Property/ 

Coulomb Matrix
Morgan Fingerprint

Other attempted models:

● CM-Conv2D

● RP-Lasso

● SMILES-Conv2D

Abbreviations:

FP: Morgan Topological 
Fingerprint
CM: Coulomb Matrix
RP: RDKit explored 
properties
LSTM: Long Short-term 
Memory
DNN: Deep Neural 
Network



Data Curation 

Logistic Regression 

KEGG
Enzyme

Database

KEGG_data_

puller.py

.txt

.gz

df

Cofactor df

Ranked List of 

promiscuous enzymes

Output 

create_

kegg_df

Compound

Database

KEGG_data_

puller.py

.txt

.gz

create_

kegg_df

select_

promiscuous_

enzymes

parse_reaction_ids

combine_

substrates_

products

df

df

explode_

dataframe

remove_

cofactors 

parse_

reversible_

reactions

df

list

list

df

create_

negative_

matches

df

PubChem

extract_

PubChem_

id

df

df
kegg_df_

to_smiles

df

neg_df

pos_df
calculate_

dist

binarize_

enzyme_

class

df

create_

cpd_info

df

PubChem ID 

Input

str

pair_

query_

compound

master_df

Logistic

Regression

master_df

model

calculate_

dist

df

df

predict 

df

binarize_

enzyme_

class

create_

cpd_info

df

Method 

Pull data Clean Data
Generate 
negative 
dataset 

Add
Features 

Master 
Dataframe

Stephen Blaskowski, Yeon Mi Hwang, Ellie James, Cholpisit(Ice) Kiattiseswee, Phil Leung
Molecular Engineering and Science Institute

Background

Substrate promiscuous enzymes can biochemically
transform several substrates. The use of promiscuous enzymes
in metabolic engineering is particularly advantageous because
it relieves the burden on the engineered organism. However,
most enzyme databases only link one main substrate to each
enzyme instead of a repertoire of suitable compounds, which
limits the chance for researchers to utilize promiscuous enzymes.
Also, another limitation for metabolic engineers comes from the
limited access to closed-source biochemical retrosynthesis tools.
To address these limitations, herein, we present a user-
friendly open-source tool that helps curate the most plausible
enzymatic transformation based on substrate promiscuity.

Goal
• Aim to utilize data science and software engineering intuition 

to find, and predict, a plausible metabolic pathway for 
production of a given molecule with retrosynthetic analysis 
approach.

• Find a novel promiscuous substrate for enzymatic 
transformation

Workflow

Result 

Frontend

Promiscuous enzyme 
dataset 

Get Product/SMILES 
dataset for each 

promiscuous enzyme

Add features
- Molecular similarity

- Enzyme class
- Compound information

compound of interest 
(Pubchem ID)  

Get the molecular 
fingerprint of input 

Logistic 

Regression 

Rank of promiscuous 
enzyme based on the 

probability 

get the molecular fingerprint 
bit vector for all  products 

<input>
Backend

<output>

Conclusion 

Introduction

References

Github repo: https://github.com/theicechol/metamoles
Dependency : Rdkit, bioPython, Pubchempy, scipy, sklearn, pandas, numpy

• Add compounds with canonical SMILES string but no isomeric 
SMILES string

• Test inclusion of additional features, such as full chemical fingerprints, 
and enzyme descriptors

• Explore alternative models, such as SVMs, neural networks, decision 
trees/random forests, and ensemble methods.

• Extend approach to include non-promiscuous enzymes
• Include simple chemical transformation for biocatalysis application

Future Work

Model 
Query 

Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M.; New approach for understanding genome variations in KEGG. Nucleic Acids 
Res. 47, D590-D595 (2019).
Kanehisa, Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K.; KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic 
Acids Res. 45, D353-D361 (2017).
Kanehisa, M. and Goto, S.; KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27-30 (2000).
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem 2019 update: 
improved access to chemical data. Nucleic Acids Res. 2019 Jan 8; 47(D1):D1102-1109. doi:10.1093/nar/gky1033.
Pertusi, Dante A., et al. "Predicting novel substrates for enzymes with minimal experimental effort with active learning." Metabolic engineering 44 
(2017): 171-181.
Segler, Marwin HS, Mike Preuss, and Mark P. Waller. "Planning chemical syntheses with deep neural networks and symbolic AI." Nature 555.7698 
(2018): 604.

MetaMolES : A Biochemical Retrosynthesis Tool 
Using Logistic Regression Model Based on Enzyme Promiscuity  

• The logistic regression model is ~90% predictive when 20% of 
the data was reserved for testing

• The model correctly predicted reactivity (P>0.5) for 14% of the 
validation reactions, and among these positive 
categorizations, the median prediction rank was 28

• Results suggest that using distance of chemical similarity is a 
reasonable approach

• Validation testing revealed a negative correlation between 
prediction rank and prediction probability, suggesting a bias 
away from false positives, and targets for model improvement

We selected logistic regression over an SVM to perform enzyme/compound reaction pairs because of 
our relatively small dataset and our desire to select and rank outputs based on predicted likelihood of 
reaction. The model was generated with sci-kit learn from 13 features with balanced feature weights and 
a liblinear solver. The output, after organizing and sorting, is the likelihood of reaction with a specific 
enzyme. The enzyme can then be looked up in the KEGG database.

Out of 17 features, 13 features were chosen for logistic 

regression based on the ranking in their significance.  

We set aside 207 (10%) known promiscuous enzyme-product pairs from 
our dataset prior to training and testing the logistic regression model. As 
an evaluation of predictive power, we fed each of the products from this 
set into the model and recorded the prediction probability for the known 
true enzyme, as well as the relative rank of the enzyme suggestion out 
of the master set of 516 promiscuous enzymes. We found a negative 
correlation between probability and rank (slope=-9.21e-4, p=1.70e-35, 
R^2=0.54). This suggests a bias away from false positives and towards 
false negatives. Top and left marginal figures are marginal histograms of 
rank and probability, respectively.

Model Validation 

normalized counts of calculated average Tanimoto similarity

for positive and negative predictions.  



Capstone Project (CHEME 547)

• Holistic integration of previous courses in real 

world project setting enabling skill mastery

• Spring quarter, 14 weeks (10 + 4)

• Students build professional skills

– Project management, communication

• Students build soft-skills through practice

• Students build professional networks

– Internships, sponsored research, etc.



Capstone Project (CHEME 547)

• Capstone projects are supplied by
– University of Washington faculty
– National labs, e.g. PNNL
– NGOs & government agencies, e.g.
• Alaska Center for Energy and Power
• Metro Transit of King County

– Companies, e.g.
• Optimum Energy
• KPMG
• Novo Nordisk



Capstone timeline

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week9 Week 10
Standup Standup Standup Standup Standup

• Alternating
– Student standups
– Professional development enrichment sessions

Stakeholder 
engagement

Project 
management

Project 
pitching pt. 1

Project 
pitching pt. 2

Informational 
interviews and 
interview skills



Capstone timeline

• 4 additional weeks after week 10
– Intended to build independence from instructor
– No standups

• Capstone showcase including
– Project ‘elevator’ pitches
– Poster session

• Invitees include faculty, sponsors, community





DopeDefects
Predicting impurity energy levels of semiconductors using machine learning

About the Data 

Ryan Beck, Lauren Koulias, Linnette Teo
Project Mentors: Argonne National Lab – Maria K. Chan, Arun Kumar Mannodi Kanakkithodi

Overview

Iterative Method using Gaussian Process Regression

Motivation

Neural networks

Feature Selection

• Chemical space for potential solar cell materials is large
• Use Density Functional Theory (DFT) computations, an 

ab inito method for calculating chemical properties
• DFT requires significant computational resources both in 

time and energy costs
• Number of calculations required to explore entire space is 

unfeasible
• Possible solution: predictive models trained on small 

subset of calculated properties

Future Work

Overview: DopeDefects is an open source python package
that aims to predict the enthalpy of formations, as well as
the charge transition levels, of various defects embedded in
Cd/chalcogenide crystals.

Available on GitHub:
https://github.com/dopedefects/dopedefects.git

Properties to predict
• Supercell enthalpies of formation (3)
• Supercell energies of charged states (6)

Descriptors of defect system (109 in total)
• Elemental: elemental properties of the dopants such as 

group, period, ionic, atomic, & covalent radii, boiling point, 
atomic weight, etc.

• ΔElemental: change in elemental properties between the 
dopant atom and the atom that it replaced 

• Unit: ΔH values from the unit cell calculation, conduction 
and valence band edges

• Cell: bond angles and bond lengths for all atoms in the 
unit cell

• ΔCell: change in the bond angles and bond lengths for all 
atoms between the doped and undoped cell

• Coulomb: coulomb matrix for the unit cell

• Start with small subset of data to fit GPR model (10% of 
315 CdTe structures)

• Use model to predict mean and uncertainty (standard 
deviation) on remaining test points

• Choose a test point that maximizes uncertainty
• Add test point (with calculated value) to model and retrain
• Iterate - keep adding points till satisfied

Data Cleaning Functionalities 
• Scan through the provided directory for VASP 

(Vienna Ab inito Simulation Package) geometry 
files and convert the coordinates to cartesian space 

• Determine the position and type of vacancy 
• Calculate the bond lengths and angles for the 

atoms surrounding the defect, as well as 
determining the change in comparison to a pure 
system

• Collect all the properties into a pandas dataframe, 
as well as save and resume the data so that data 
parsing does not need to be redone

Neural net does not perform significantly better than 
random forest – need further optimization, more data

• Used elemental and unit descriptors; 425 data points
• Split data 6:2:2 (training:validation:testing)
• Hyperparameter tuning: batch size, epoch number, 

number of nodes in hidden layers, learning rate, 
dropout rate

• Multiple output predictions
• Improvement of prediction for impurity transition levels
• More detailed analysis into different CdX structures

Maximizing uncertainty using GPR vs random search 
helps reduce initial number of known points needed• For each property being predicted, a different set of 

descriptors was the most accurate, the top 7 for 
each category are shown above

• Overall it seems that Elemental properties are 
always necessary, combined with other descriptors 
for the most accurate results  

RMSE for Random Forrest Regression



Route_Dynamics: An open-source package 
for visualizing and ranking transit routes

Atinuke Ademola-Idowu, Erica E. Eggleton, Yohan Min, Kaiming Tao 

Purpose

Work Flow / Packages

Results

Future Work

Input Data Types and Cleaning

Driving up and down hills is a source of stress for 
batteries in electrified vehicles due to high 
charge/discharge rates.  This software uses geographic 
information systems (GIS) data to determine the 
elevation profiles for King County Metro bus routes and 
ranks the difficulty based on road grade. This package can 
also be used as a component for a predictive battery 
degradation model.

• Add more points (e.g. interpolation) for higher resolution along the route for a smoother 
elevation profile and more accurate ranking metric

• Combine elevation surface and terrain models to account for bridges and overpasses
• Create Python package for data cleaning to minimize the need for ArcMap
• Add more stress parameters (mass, velocity, acceleration, weather conditions) to get a better 

estimate of battery fatigue

Bus routes: Shapefile (.shp) [1] Elevation: Raster file (.tif) [2]

Current ranking metrics included in software:
1) 𝑀𝑒𝑡𝑟𝑖𝑐 1 = σ 𝑔𝑟𝑎𝑑𝑒

𝑟𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

2) 𝑀𝑒𝑡𝑟𝑖𝑐 2 = σ 𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑜𝑖𝑛𝑡𝑠
𝑟𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

3) 𝑀𝑒𝑡𝑟𝑖𝑐 3 = σ 𝑈𝑝ℎ𝑖𝑙𝑙 𝑔𝑟𝑎𝑑𝑒
𝑟𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

4) 𝑀𝑒𝑡𝑟𝑖𝑐 4 = σ 𝐷𝑜𝑤𝑛ℎ𝑖𝑙𝑙 𝑔𝑟𝑎𝑑𝑒
𝑟𝑜𝑢𝑡𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Bus route coordinates 
from King County 

Metro

Elevation data for the 
King County area 
from Washington 

Department of 
Natural Resources

Read Data Process Data

Convert elevation 
data to coordinate 
system used by bus 

routes.

Re-trace routes to 
extract only one-way 

bus routes

Display selected bus 
routes on map using 
colors to represent 
elevation gradient

Display plots of 
selected bus routes’ 
actual elevation and 
absolute road grade

Visualize Data

Extract elevation data 
for each bus route 

and merge with route 
coordinates into a 
GeoJson format 

Calculate route 
elevation gradient 

and compute 
different stress 

metrics

Analyze Data

� Geopandas
� Rasterio

� ArcGIS/ArcMap
� Geopandas
� Rasterio

� Geopandas
� Shapely
� Geopy
� Pandas
� Rasterstats

� Folium
� Matplotlib
� Branca

Packages

Visualization OutputData Analysis Output

Route Ranking

40

45

75

45

40

7545

75

40

Road Grade

3D Visual of three routes References: [1] King County GIS Data Portal. (2017, April), [2] WA Department of Natural Resources, Lidar Portal. (2016)

Above: The package produces elevation profiles and the absolute road 
grade profiles for each route that is called. 
Right: The package experiments with various metrics to rank route 
difficulty for the bus batteries.

Above: The package produces a map, either within a notebook or saved 
as an HTML file, that shows the selected routes and road grade. 

…



Enrollment

Enrollment by unit 

Year Students

2017 15

2018 17

2019 18

CHEME 
Enrollment

28

41

50

Year



Options student outcomes

19

5

• Outcomes for degrees granted (CHEME)
–Most MS are two years (thesis) so limited data



Future

• Diversification from molecules
– Controls, operations, process analytics
– Industry 4.0, IoT, online decision making

• Challenges
– How to structure sequencing of new courses
– How to offer this to our undergrads (4+1?)

• Create Data Science Options in
–MolES (done, May 2019)
– Chemistry (in progress)
–MSE (in progress)



FutureCHEMICAL ENGINEERING
KNOWLEDGE AND SOLUTIONS 
FOR A CHANGING  WORLD

WHY DATA SCIENCE & CHEMICAL ENGINEERING?

All of engineering & science is experiencing the Data Science 
revolution. Chemical Engineering is at the forefront of Data 
Science as a result of the constant streams of big data from 
industrial sensors, robotics and advanced instrumentation. 
To be competitive in today’s advanced workforce and academic 
environments, Chemical Engineers need to understand how 
to efficiently manage, process, and provide critical decision 
support in response to an ever expanding stream of incoming 
data.  UW’s Chemical Engineering track in Data Science 
provides real world training & experience.

MASTER OF SCIENCE IN CHEMICAL ENGINEERING 

DATA SCIENCE TRACK
UW CHEMICAL ENGINEERING DATA SCIENCE PROGRAM

UW’s ChemE Data Science track offers students with a 
background in chemical engineering, or a related field, applied 
data science instruction highly contextualized in chemical 
engineering and molecular science. Topics of  instruction & 
practice include machine learning, cloud & high performance 
computing, Python scientific programming, statistics and 
computational molecular science. Students complete their real 
world training with a team-based capstone project to cement 
their skills and help build a data science portfolio to enable 
success in a competitive workforce.

www.cheme.washington.edu
LEARN MORE & APPLY

2020 class will 
be our first year 
of this non-
thesis data 
science track



More info & future directions

• The course materials are all open source and 
available online in our GitHub repository (BSD)
– https://github.com/UWDIRECT/UWDIRECT.github.io
– Lectures, homework assignments, some videos

• We need more ChemE Data Scientists!

ChemE Data Scientist
Knows transport, thermodynamics and machine learning

https://github.com/UWDIRECT/UWDIRECT.github.io
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Student thoughts

• “DIRECT is a multidimensional and 
interdisciplinary training program that teaches 
students effective communication, good 
coding practices, team building, and the core 
fundamentals of data science. With multiple 
opportunities for students to engage in data 
science related research outside of their field 
of expertise, students are forced to tackle 
difficult, real-world problems in team settings 
with industry, national labs, and academia.”


