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Why data science for ChemE?
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History of data science @ UW E&?

» “Big Data” is a common
buzzword
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History of data science @ UW %Ag

2008

* Many groups on the

UW campus had data
sets that were posing
challenges

* How to extract

knowledge and
actionable information
from these data?



History of data science @ UW ﬁg

e Convened groups from
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m History of data science @ UW %%f

e Core skills (i.e. data suence)




m History of data science @ UW %%f

e Core skills (i.e. data science):
* Data management

High volume streaming data

Data parallel computation

SAPACHE &ﬁ el

par




History of data science @ UW %{é

e Core skills (i.e. data science):
* Data management
* Statistics

Py (X)

Wikipedia



History of data science @ UW

e Core skills (i.e. data science):
* Data management

* Statistics
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m History of data science @ UW %

e e Core skills (i.e. data science):
* Data management
| e Statistics
 Machine Learning

Meaningful
Compression

Structure Image

. e Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

A " Diagnostics
Visualistaion Reduction Elicitation Detection

Advertising Popularity
Prediction

Learning Learn | ng Weather

Forecasting
L4
M a.c h | n e Population

Growth
Prediction

Recommender Unsupervised Super‘vised

Systems

Clustering
Targetted
Marketing

Market
Forecasting

Customer

Segmentation Le a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

www.slideshare.net/awahid

Learning Tasks



m History of data science @ UW %

e Core skills (i.e. data science):
* Data management
* Statistics
 Machine Learning
* Visualization

gy Consumption in 2018: 101.2 Quads u Iﬁggg‘glceg%%%e

forbes.com

circos.ca



History of data science @ UW %ﬁg

e Core skills (i.e. data science):
* Data management
* Statistics
 Machine Learning
* Visualization
e Software Engineering

IS THERE A REPRODUCIBILITY CRISIS?

7% 52%
Don't know Yes,

a significant crisis

Version control

* Use cases & design
 Testing & verification
 Programming style

GitHUb e Documentation L

Manuscript = Patent = Software = Dataset



History of data science @ UW ﬁgf

e Core skills (i.e. data science):
* Data management
* Statistics
 Machine Learning
* Visualization
e Software Engineering

UNIVERSITY of WASHINGTON

eScience Institute

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS




ChemE @ UW gets into data
science education

e 2013 IGERT-CIF21: Big Data U: A Program for
Integrated Multidisciplinary Education and ﬁ;§F
Research for Big Data Science, #1258485 ’

— Astronomy, Biology, Chemical Engineering,
Computer Science, Oceanography, Statistics

— IGERTs directly funded graduate student trainees

— Goal: Create 1 shaped scientists and engineers

/[

Chemical Data
Engineering  science



ChemE @ UW gets into data
science education

2013 IGERT

.
. F

Students need to take 3 out of 4 core courses in
methods

— Statistics (STAT 509 or STAT 512-513) *500 level classes

— Machine learning (CSE 546 or STAT 535)  2re graduate

classes @ UW
— Data management (CSE 544)
— Data visualization (CSE 512)

Participate in Data Science Community Seminar
(CHEME 599)

Data science lunch program

Cohort building
activities



ChemE @ UW gets into data
science education

2013 IGERT

* Departments can offer “transcriptable m
options” that add on to their degrees, e.g.

PhD in Chemical Engineering with Advanced
Data Science Option

* Process:
— Departmental faculty vote to add an option

— Graduate school reviews option with input from
campus, e.g. eScience Institute



ChemE @ UW gets into data
science education

2013 IGERT

e 2015 UW graduated the first Advanced Data Science
Option (ADSO) student...

Chemical Engineering!

* Signals from this first student:
— She completed the ADSO without receiving IGERT funding

— She landed her “dream job” as a data scientist in a synthetic
biology company

— San Francisco company created an office in Seattle
specifically to build a data science team



ChemE @ UW gets into data
science education

#

e Lessons learned from the Advanced Data
Science Option in ChemE

— Statistics grad level classes are HARD
— CSE grad level machine learning is even HARDER
— Not really available to our MS students

— 14+ ADSO offering units on campus (now), classes are highly
subscribed and often wait listed

+ There is demand from students for these skills

+ They want to participate even without fellowships

+ Employers really want our grads with data science skills
+ Cohort based learning works for data science



ChemE data science for all %

2016 NRT-DESE: Data Intensive Research Enabling
Clean Technologies (DIRECT), #1633216
— PI: Jim Pfaendtner (ChemE)

— ChemeE, Chemistry, Materials Science & Engineering,
Molecular Science & Engineering program (2019)

NSF

— NSF NRT is less about directly funding students and more
about creating programs

— Build a broadly accessible graduate data science education
environment with a focus on clean energy / clean tech

UNIVERSITY of WASHINGTON

CLEAN ENERGY Sci Institut
INSTITUTE eocience Insliuie

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS



Goals of DIRECT

e Students should be fluent in data science
methods, best practices and tool development

— E.g. they need to know how to choose a neural
network architecture (FF ANN, RNN, CNN) but not
how to derive a variable learning rate optimizer

— E.g. they need to know how to use database query
languages, but now how to build query planners

— E.g. they need to know how to write software, use
test-driven development, and perform code
reviews but now how to build a compiler




Goals of DIRECT

e Students should be fluent in data science
methods, best practices and tool development

* No prerequisites
* 6 month intensive experience, 3 courses, 2 qtrs.

* Use project based learning to teach:
— Software Engineering —

— Statistics m

— MaChIne Learnlng - UNIVERSITY of WASHINGTON
— Data Management o%éfeSaence Ins’rl’rute

DVANCING DATA-INTENSIVE DISCOVER

— Visualization |



Points of leverage in DIRECT ﬁg

* Participating departments are molecularly
focused

— Contextualize data science in the language of
molecules

— E.g. talk about predicting molecular properties,
not frenemy networks in twitter

* Use ‘cohort effect’ to enhance learning

experience & ]

* Active learning classrooms




Points of leverage in DIRECT E&?

Participating departments are molecularly
focused

— Contextualize data science in the language of
molecules

— E.g. talk about predicting molecular properties, not
frenemy networks in twitter

Use ‘cohort effect’ to enhance learning
experience

Active learning classrooms m
UW’s ‘transcriptable options’
Huge set online learning resources for Python




DIRECT course overview %

* Three courses make up the ‘Data Science Option’

— CHEME 546: Software Engineering for Molecular Data
Scientists (SEMDS)

* Winter quarter (10 weeks)

— CHEME 545: Data Science Methods for Clean Energy
Research (DSMCR)

* Winter quarter (10 weeks)

— CHEME 547: Molecular Data Science Capstone

e Spring quarter + Summer A-term (14 weeks)



#

Cohort from colearning

 SEMDS (Soft. Eng.) & DSMCER (DS Methods)

— Run

concurrently

— All students take both courses at the same time

— 6 hours a week contact time with instructor

— +2 hours a week office hours with instructor & TAs

— Slac
stud

< organization & channels for questions and
ent help, peer support, “clicker” in class,

stuc

y groups, even socialization



Cohort from co-learning %

 SEMDS (Soft. Eng.) & DSMCER (DS Methods)

— Run concurrently

— All students take both courses at the same time

— 6 hours a week contact time with instructor

— +2 hours a week office hours with instructor & TAs

— Slack organization & channels for questions and
student help

— Group based project is shared across both courses



Why concurrent courses? %

* Dependency graph of learning objectives

Teaching test driven development

Week 1 ﬁ Week 2 ﬁ Week 3

Coding using Unit testing of Test driven

SEMDS
SEMDS

functions functions development

/

Learning objective



Why concurrent courses? %ﬂg

* Dependency graph of learning objectives
Teaching visualization in Python w/ no prereqs

Week 1 Week 2 Week 3
a Coding in a
> >
L Python L
o - o
O Loading data Visualization in O
A into Python Python A

Learning objective



Why concurrent courses? %

 Dependency graph of learning objectives can
cross course boundaries

* Shortens the length of the dependency in real
world time vs. sequential courses

— Higher retention of concepts
— Immediate practice of concept in application

* Why not one large course?
— Students arrive with different baselines

— Different courses enable differential feedback on
strengths and weaknesses



Syllabus for SEMDS & DSMCER *4%

DSMCER

Week 1 ‘

:\x | Two courses x two 1.5 hr classes / week = 6 hrs / wk



't Syllabus for SEMDS & DSMCER %

DSMCER

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~ AN .
PM




't Syllabus for SEMDS & DSMCER %

DSMCER

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNEEEE EBEEEE B B EEE
ev | L




't Syllabus for SEMDS & DSMCER %

DSMCER

Command line

Version control w/ git

Version control w/ GitHub

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNEEEE EBEEEE B B EEE
ev | L

Introduction to Data Science



' syllabus for SEMDS & DSMCER %

Python data types

Python flow control

Functional programming

Week 1 Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNEEEE EBEEEE B B EEE
ev [ L




Syllabus for SEMDS & DSMCER *4%

DSMCER

Problem statement to code

Week 1 | Week 2 Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNEEEE EBEEEE B B EEE
ev | L

Python data management

Relational data models

Visualization in Python



Syllabus for SEMDS & DSMCER *4%

DSMCER

Software licensing

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNEEEE EBEEEE B B EEE
ev [ L

Descriptive statistics & CLT
Statistical distributions

Hypothesis testing



Syllabus for SEMDS & DSMCER *4%

Project team formation
proceeded by Slack

discussions and in class Unit testing & continuous integration
student presentations Documentation & programming style

DSMCER

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNEEEE EBEEEE B B EEE
ev [ L

Linear regression

Bias variance tradeoff



1= Syllabus for SEMDS & DSMCER %

DSMCER

Test driven development
Software design

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNNEEE EBEEEE B B EEE
ev [ L

K-nearest neighbors

Unsupervised clustering



1= Syllabus for SEMDS & DSMCER %

DSMCER

Virtualization for reproducibility

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNNEEE EBEEEE B B s
ev [ L

Bootstrapping
Cross validation

Regularization



1= Syllabus for SEMDS & DSMCER %

DSMCER

Python package structure & code sharing

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNEEEE EBEEEE B B EEE
ev | L

Decision trees
Image analytics

Support vector methods



Syllabus for SEMDS & DSMCER *4%

DSMCER

Student standups

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNNEEEE EBEEEE B B EEE
ev | L

Multilayer perceptron & FF ANN

Neural network best practices



Syllabus for SEMDS & DSMCER *4%

DSMCER

Student standups
Student standups

Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 | Week 9 |Week 10

~HNNEEE EBEEEE B B EEE
ev | L

Natural language processing

Recurrent & Convolutional networks



Homework: dual task learning E&g

* Five homework assignments for each course

— E.g. write a K-nearest neighbor classifier for
selecting force field parameters

* All homework is submitted using GitHub

— Reinforces the usefulness of version control

— Reinforces the technical knowledge -
Students can revise Confidence level 0-10 | ~ a After
homework source code using version control

for up to two weeks after
submission

Before



Projects for SEMDS & DSMCER 45

 Same project for both courses
— Differential grading rubrics
— Double student hour efforts enabling adv. projects

* Criteria for the student project
— Topic should be molecular* or clean tech focused
— Must utilize two or more non-trivial data sets
— Teams should be 4 members (3 & 5 discouraged)

— Students must use Python & software design, test
driven development, documentation, style

— Students must use best practices for DS methods



Projects for SEMDS & DSMCER 45

* Projects are presented at poster session
where all faculty, chairs, and previous student

cohorts are invited

* E.g. posters...



Data Intensive Research
Enabling Clean Technologies

Introduction

* Using data from a custom built supercritical gasification reactor on
campus to analyze formic acid Raman spectra.
* Decomposition of formic acid constitutes the combination of two
pathways:

HCOOH — H; + CO,
HCOOH — H,O +CO

Photographs of UW Gasification Reactor with In-Situ Raman Probe

New Method!
* Free
* Open Source + Customizable >
Research backbone easily
updated by anyone
* Automated processes

) Jupyter
— | @ python

(@]
GitHub

Goals

1. Data Mining and Baseline Subtraction
¢ Importing open source data sets, create a library of spectra,
uniformly format data for analysis
2. Data Visualization
« Outputting plots of baseline subtraction and peak identification
3. Machine Learning
* Prepare least squares regression model for calculating kinetic rate
decomposition at different resonance times and temperatures

MATLAB

In-Situ Raman Spectroscopy Component Identification for
Machine Learning Based Decomposition Analysis

Materials and Methods

Baseline Subtraction of Raman Signal
Used PeakUtils built in baseline function to perform polynomial fit baseline subtraction
on NIST database spectra. Examples of this functionality are shown below.

Water Baseline Subtraction Output Acetone Baseline Subtraction Output

Component Analysis in a Mixture Raman Signal

The LMFit package was utilized to identify 5 descriptors per peak in a mixture’s Raman
signal including: location of the peak, peak height, and peak width. As a mixture has more
peaks (components from decomposition) the amount of descriptors increases.

Least Squares Model Equation 12

fx)= % filx, A, . 0)
i=1

i
i

Lorentzian Equation for a Single Peak

filx, A, p,0) = %[ﬁl

Component Confidence based on Euclidean Distance
Once components in a ‘testing’ dataset
mixture are identified the next step is to take
a ‘training’ dataset location and share with
the user the Euclidean distance between the
two datasets. For this software if a peak
location is more then +10 cm? from the
literature values the confidence that the peak a2
represents the compound is zero. This range 050
was set from experimental considerations.

Counts (Noemalized)

After creating a theoretical NIST ‘training’ datasets and proving the functionality of the
code the final step was to test it on experimental data sets taken in the lab.

UNIVERSITY of WASHINGTON

eScience Institute

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

Continuing Work

Machine Learning for Material Decomposition
* We implemented functionality to run a least squares regression
that fits Lorentzian curves to the data. The function is given the
peak locations determined using scipy.signal.find_peaks.

1. Expand software to be able to compute decomposition rates
across varying parameters such as temperature, resonance
time, possibly pressure.

2. From the defined decomposition rate the software can
predict the decomposition rates using machine learning
beyond the known data set limits

Carbon Monoxide Spectra Lorentzian Output

— Data
08 i
Least Squares Fit

s | A - Peak Lorentzians
Hos
w
E
T
8
c
302
go

0.0 e =

1600 1800 2000 2200 2400 2600 2800 3000
Wavenumber (cm™1)

Conclusions and Future

In conclusion our team successfully created a fast functioning open
source code base that saves hours of research time in data cleaning
and analysis of Raman Spectra. We have also set a strong base for the
next step of our focus which is on calculating decomposition of
substances using Lorentzian peak information that will be applied to
machine learning optimum temperatures and pressures in a
gasification reactor system.

Future work

This work sets up a free and user friendly platform for researchers to be
able to analyze their own Raman Spectra.

Acknowledgements

« Dave Beck, Chad Curtis, and Kelly Thornton
« Data sets were taken from publicly available from the NIST WebBook Database
and Mendeley Data, “Raman Spectra of Formic Acid Gasification Products in
Subcritical and Supercritical Water”
Only open source packages were used in this work, documentation of all
packages used can be found at our GitHub at:

*  https://github.com/raman-noodles/Raman-noodles




Overview

SPEEDCOM is an open-source python package that uses deep learning
methods to predict the absorption and emission spectra of small organic
molecules.

GitHub: https://github.com/emissible/SPEEDCOM

Motivations

The use of ab initio methods to calculate molecular spectra is usually
lengthy, expensive, and may even be inaccurate depending on the choices
for the level of theory. As such, a fast, experimental, data-derived method
for predicting excitation and emission spectra for organic species is
proposed to aid in rapid prediction of spectral features. This has potential
uses in applications such as fluorophore-design.

Data Cleaning

To obtain the dataset used for training, the files from the database were parsed to:

e Obtain the absorption and emission spectra;
e Obtain the smiles strings for molecules using pubchempy package;
e Removing extraneous counter ions from generated SMILES strings;
e Generating descriptors using RDkit package:

o Coulomb Matrix of nuclei

o Morgan Topological Fingerprint

o Molecular Properties

Use Cases
FRONT END “‘l. l |
i - | | |
BACK END ‘ |

|
Via a GUI, users can...
e Input the SMILES string of a given molecule
e Visualize the 2D skeletal structure of this molecule

e Visualize and download predicted spectra and associated characteristics
such as the quantum yield and molar extinction coefficient.

Model Architectures

Nurmeric encoded SMILES/
Numeric encoded SMILES ROkt Property/

Results & Discussion

The proposed package frameworks were built successfully with intended
functionalities and have achieved R? > 0.7 for wavelength prediction with
validation data

e Multidimensional property exploration was performed for the molecules
included in the database

e The structural information encoded in SMILES/ connectivity fingerprint/
Coulomb matrix can be used to calculate spectroscopic properties

® The accuracies of our models are largely limited by the small size of the
dataset, and the complexity of the problems.

e With the pre-trained models weights, the prediction speed can be guaranteed,
while the fine-tuned accurate models still remain as biggest challenges.

Example GUI:
SMILES Prodiction Results
s vt <0G 5
—
w0
Molecule iun
occear
fae
L.
Vi
\ W o2
o " w0 20 20 £ »
Characteristics
v pr—. - -
. crmos
Future Work
® Sanitize SMILES input; add alternative input options
e Expand database and tune parameters for more accurate models
e Include multiple features in predicted absorption/emission spectra
o Allow users to train models with their own data
e Add a feature for pipelining predictions

Morgan Fingerprint e i Morgan Fingerprint
[ i ] 1 ] Ocher attempred models
Conv1D(5-128)
© CM-Con2D
[ ismeso) | [“convib(to-192) | [ Flatten () ]
Conv1D(3-128) ® RP-Lasso
[ smen | [convibs-192) | [ Densesiz) | *  SMILES-Conv2D
Conv1D(1-128)
[ ey ] [ Convib@E92) | [ Densestz) | -
Flatten ()
EP: Morgan Topological
[Densets0) [_Faweng ] [ pensesr2) ] Fingerprint
Dense(512) CM: Coulomb Matrix
RDKit explored
[ Fatenn | [ pensest2) | [G ] o
Linear/Sigmoid LSTM: Long Short-term
Memory
[ tnear ] [ tnear ] DNN: Deep Neural
Network
FPISMILES-LTSM 'SMILES-ConviD RP/CM-DNN FP-ConviD
Metri
i T "5 - g
~ -
., o8 =
- P L 10000
DR v I
™ e 3 4 oo
i . a',--"“- § oo
[ bl s
Tl & K . )
f! 8 -
2 .
- s 0w W me  m
[
- o Ime
iu an - mee=
-
]
e 3
Left side: SMILES-Conv1D model metrics
i . y, & (topleft:  predicted absorption vs. actual wavelength;

(bottor left: prediction error vs. actual absorption wavelength
Topight: History training loss and validation loss vs. epochs
Bottom right; testing R? across different models with various predictors

References

Data: PhotoChemCAD (http:/ ¢ SAD.hrml)
Dependencies: Keras, TensorFlow, RDKit, Pandas, Numpy, PubChemPy (all open-source).
Publication: Garrett B. Goh et al. 2018. SMILES2vec. In Proceedings of ACM SIGKDD Conference, London, UK, Aug, 2018 (KDD 2018), 8 pages
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MetaMoIES : A Biochemical Retrosynthesis Tool
Using Logistic Regression Model Based on Enzyme Promiscuity

____Introduction ] Method ________J _____ Result |

Background Data Curation Model Validation
Substrate promiscuous enzymes can biochemically e

transform several substrates. The use of promiscuous enzymes a Add Master et
in metabolic engineering is particularly advantageous because Pull data Clean Data ':Iegt:lslzf Features Dataframe :
it relieves the burden on the engineered organism. However, & Eos |
most enzyme databases only link one main substrate to each % )_\'
enzyme instead of a repertoire of suitable compounds, which - K
limits the chance for researchers to utilize promiscuous enzymes. Output jd
Also, another limitation for metabolic engineers comes from the KEce data_ Sy m Sompound . kece dua. * 3
P . . . Ranked List of 04
limited access to closed-source biochemical retrosynthesis tools. @m@ § 0
To address these limitations, herein, we present a user- I-‘x‘ l"x‘ §
friendly open-source tool that helps curate the most plausible e o T o2
enzymatic transformation based on substrate promiscuity. e predict &

0o

0 100 0 300 400 500
prediction rank of true enzyme

Goal

« Aim to utilize data science and software engineering intuition
to find, and predict, a plausible metabolic pathway for
production of a given molecule with retrosynthetic analysis
approach.

df

create_
cpd_info

df

We set aside 207 (10%) known promiscuous enzyme-product pairs from
our dataset prior to training and testing the logistic regression model. As
an evaluation of predictive power, we fed each of the products from this
set into the model and recorded the prediction probability for the known
true enzyme, as well as the relative rank of the enzyme suggestion out
of the master set of 516 promiscuous enzymes. We found a negative
correlation between probability and rank (slope=-9.21e-4, p=1.70e-35,
R*2=0.54). This suggests a bias away from false positives and towards
false negatives. Top and left marginal figures are marginal histograms of

Logistic

list df Regression

kegg_df_
to_smiles

parse_
reversible_
reactions

« Find a novel promiscuous substrate for enzymatic
transformation

master_df df

k f | Cofactor df il i rank and probability, respectively.
Workflow o
pos_df df ir_ i
Backend Frontend =1 " | = Conclusion
<input> neg_df s s
Promiscuous enzyme compound of interest i » The logistic regression model is ~90% predictive when 20% of
dataset (Pubchem ID) PubChem ID the data was reserved for testing
| » The model correctly predicted reactivity (P>0.5) for 14% of the
Get Product/SMILES Get the molecular Input validation reactions, and among these positive
da?aset for each fingerprint of input l_OgIStIC Regressmn Model categorizations, the median prediction rank was 28
PICINIEETETES CEI Q + Results suggest that using distance of chemical similarity is a
uery reasonable approach
Normed Density Distribution of Average Simiarity to Products Feature Ranking « Validation testing revealed a negative correlation between
get the molecular fingerprint Logistic == prediction rank and prediction probability, suggesting a bias
bit vector for all products Regression o away from false positives, and targets for model improvement
g
| s
Add features H s
- Molecular similarity Rank of promiscuous 3 L . g;\i/ld"_cggptoynds with canonical SMILES string but no isomeric
- Enzyme class enzyme based on the - string
- Compou)r:d information probability « Testinclusion of additional features, such as full chemical fingerprints,
<output> [nl I I l and enzyme descriptors
EFEEEET R AR E

Average Tanimats Simdarity

« Explore alternative models, such as SVMs, neural networks, decision

fassiee trees/random forests, and ensemble methods.
erences remlen e o g s et sy ket e, 3ot v ot e + Extend approach o include non-promiscuous enzymes
 Include simple chemical transformation for biocatalysis application
e btoags (apay o M- Morihima. K. and Tanabe, M New approach for varatons n KEGG Nuclec Ack We selected logistic regression over an SVM to perform enzyme/compound reaction pairs because of
e D it (o 5210 2 Morihima, K KEGG: new perspeciives on genomes, plfeys, dseases and dgs. Nuckelo our relatively small dataset and our desire to select and rank outputs based on predicted likelihood of
A e e O e e B s . Zhamers Boton EE. PubGhem 2019 updte: reaction. The model was generated with sci-kit learn from 13 features with balanced feature weights and Github repo: htips://github.com/theicechol/metamoles

a liblinear solver. The output, after organizing and sorting, is the likelihood of reaction with a specific

Dependency : Rdkit, bioPython, Pubchempy, scipy, sklearn, pandas, num,
M P 2 ARt T3 1ot A bl kb e S i bt o ool A1 Ak EEE 7000 enzvme The enzvme can then he lnoked 11n in the KFGG datahase Sepencenay ’ Pyt ’ Py, SCIpY, > P b Py



Capstone Project (CHEME 547) %

* Holistic integration of previous courses in real
world project setting enabling skill mastery

e Spring quarter, 14 weeks (10 + 4)

e Students build professional skills

— Project management, communication

e Students build soft-skills through practice

e Students build professional networks

— Internships, sponsored research, etc.



Capstone Project (CHEME 547) %

* Capstone projects are supplied by

— University of Washington faculty
— National labs, e.g. PNNL

— NGOs & government agencies, e.g.
* Alaska Center for Energy and Power
* Metro Transit of King County
— Companies, e.g.
* Optimum Energy
e KPMG
* Novo Nordisk



Capstone timeline

e Alternating
— Student standups
— Professional development enrichment sessions

Week1l Week2 Week3 Weekd4 Week5 Week6 Week7 Week$8 Week9 Week 10

-m—m-m-m-m

Stakeholder

Informational

engagement interviews and

interview skills
Project
management
Project Project
pitching pt. 1 pitching pt. 2




#

Capstone timeline

* 4 additional weeks after week 10
— Intended to build independence from instructor
— No standups

* Capstone showcase including
— Project ‘elevator’ pitches
— Poster session

* |nvitees include faculty, sponsors, community



High-Throughput Measurement of Deep Eutectic Solvent Meltii
Project Sponsor: Dr. Lilo D. Pozzo (Chemical Engl" ¢
Team Members: Shrilakshmi Bonageri (Chemical Engineering), Jaime Rodrlguez hemlcal Engineering),

g Pomts using IR Bo

(Chemical Engineering)
Background and Motivation Bolometry Setup Alternative Method for Low-Contrast Samples
. Lepton 3.5 IR * In some situations, the contrast between the
Deep eutectic solventg (DES) are novel solvents g;fzn;:x:: image and sample may be too low for edge
formed between organic hydrogen bond acceptors detection, even with contrast enhancement.
and donors. DES can be formed at low-cost for o
g X 2 5 Enhanced Contrast _ Missing Samples
several important applications, such as chemical 12 ° i
synthesis, extractions, electrochemistry, and even [*
drug delivery. However, the design space for DES is . &
enormous and high-throughput measurement of Well Plate 4
melting points is required to rapidly identify DES with “— Hotplate ' ¥
melting points that are feasible for their intended - Sample temperature is monitored by an IR AT e T
application. camera. + Alternatively, centroid locations for each sample
+ Melting points are detectable from a sudden can be found by summing pixel values over
increase in sample temperature due to an individual rows and columns of the sample
increased thermal conductivity in the liquid holder (well plate).

phase Sum of pixel values over columns against column index Sum of pixel values over rows against row index
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Workflow » e |
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i il i » Using this alternative
Record Bolometry : method, centroids were
\ 1 J 5 located for each
) sample in a 96 well
s ) Edge Detection * The temperature profile of the o i lat
Determine Sample i 100 microplate.
Contrilde % samples and plate is
3 J P determined by detecting the 9 9 00 2%
[ 25 50 75 100 125 150 e P
(@ T N and monitoring the temperature
tract e . : : % a
i 3 Area Fillin at their centroids. Using IR Bolometry, melting points can be
\ J - g determined for multiple samples at once in a matter
1 i -;a'm( ' of minutes, as opposed to standard techniques
T i 8 / which may take up to an hour for a single sample.
Repeat for Each 50 75 100 125 150 g 504 / .o .
Individual Frame 8 / Once sufficient data is collected, future work may
\ J .. Centroid location §‘°‘ e include the development of a machine learning
1 & ¢ / model to predict the melting points of DES based on
- , 2 . e
Construct Temperature B oof — their composition.
Profile and Obtain " % 20 30 40 50 60 \
L Melting Point ) 20 T35 1008 1150 K3 Temperature of the well plate( ' C) »¥. CLEAN ENERGY

INSTITUTE



Overview \

Overview: DopeDefects is an open source python package
that aims to predict the enthalpy of formations, as well as
the charge transition levels, of various defects embedded in
Cd/chalcogenide crystals.

Available on GitHub:
https://github.com/dopedefects/dopedefects.git

Motivation
» Chemical space for potential solar cell materials is large

» Use Density Functional Theory (DFT) computations, an
ab inito method for calculating chemical properties

« DFT requires significant computational resources both in
time and energy costs

* Number of calculations required to explore entire space is
unfeasible

» Possible solution: predictive models trained on small
subset of calculated properties

About the Data
Properties to predict
» Supercell enthalpies of formation (3)
» Supercell energies of charged states (6)

Descriptors of defect system (109 in total)

» Elemental: elemental properties of the dopants such as
group, period, ionic, atomic, & covalent radii, boiling point,
atomic weight, etc.

* AElemental: change in elemental properties between the
dopant atom and the atom that it replaced

¢ Unit: AH values from the unit cell calculation, conduction
and valence band edges

* Cell: bond angles and bond lengths for all atoms in the
unit cell

» ACell: change in the bond angles and bond lengths for all

atoms between the doped and undoped cell
K Coulomb: coulomb matrix for the unit cell /

DopeDefects

> CLEAN ENERGY
2w INSTITUTE

NIVERSITY

DIRECT

¥ Data Intensive Research
Enabling Clean Technologies

of WASHINGTON

Predicting impurity energy levels of semiconductors using machine learning

Ryan Beck, Lauren Koulias, Linnette Teo

\

4 Data Cleaning Functionalities

» Scan through the provided directory for VASP
(Vienna Ab inito Simulation Package) geometry
files and convert the coordinates to cartesian space

+ Determine the position and type of vacancy

+ Calculate the bond lengths and angles for the
atoms surrounding the defect, as well as
determining the change in comparison to a pure
system

» Collect all the properties into a pandas dataframe,
as well as save and resume the data so that data

parsing does not need to be redone

- J
/ Feature Selection \

RMSE for Random Forrest Regression

* For each property being predicted, a different set of
descriptors was the most accurate, the top 7 for
each category are shown above

* Overall it seems that Elemental properties are
always necessary, combined with other descriptors

Kfor the most accurate results /

Project Mentors: Argonne National Lab - Maria K. Chan, Arun Kumar Mannodi Kanakkithodi

/ Neural networks \

» Used elemental and unit descriptors; 425 data points
« Split data 6:2:2 (training:validation:testing)
* Hyperparameter tuning: batch size, epoch number,

number of nodes in hidden layers, learning rate,
dropout rate g sy it g

formation entralg,
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Neural net does not perform S|gn|f|cantly better than
K random forest — need further optimization, more data /

merative Method using Gaussian Process Regressi(%
+ Start with small subset of data to fit GPR model (10% of
315 CdTe structures)

» Use model to predict mean and uncertainty (standard
deviation) on remaining test points

» Choose a test point that maximizes uncertainty
» Add test point (with calculated value) to model and retrain
* lterate - keep adding points till satisfied

ANCE-0ich) formation enthaipy AMCT-rich) formation enthaipy

—GoR,

—— R, s uncertainty 0z
%0 —— GPR, random

-
Future Work
* Multiple output predictions
» Improvement of prediction for impurity transition levels
* More detailed analysis into different CdX structures

100 S 200 250 o %0 100 150 200 50
.....

MaX|m|2|ng uncertalnty using GPR vs random search
helps reduce initial number of known points needed /

~
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UNIVERSITY of WASHINGTON

for visualizing and ranking transit routes

Atinuke Ademola-ldowu, Erica E. Eggleton, Yohan Min, Kaiming Tao

|

RS
& \@ DIRECT

Purpose ‘ } Results

information systems (GIS) data to
elevation profiles for King County
ranks the difficulty based on roac
also be used as a component for
degradation model.

—

é Read Data A

Wol

/Process D

Bus route coordinates Re-trace routd
from King County mmmal extract only on:
Metro bus route

Elevation data for the
King County area
from Washington

Convert eleval
data to coordi
system used b

Department of
2 routes.

Natural Resources

- /L

= Geopandas
= Rasterio

|

m King County

METRO

]

= ArcGIS/ArcMa|
= Geopandas
= Rasterio

Input Da

Bus routes: Shapefile (.shp) [1] Ele

Driving up and down hills is a source of stress for
batteries in electrified vehicles due to high
charge/discharge rates. This software uses eeogranhic

Data Intensive Research
Enabling Clean Technologies

Data Analysis Output

E AT

0.
Road Grade

-
235th ECS Meeting
May 26-30, 2019

Dallas, TX

Sheraton Dallas

Multiscale Modeling, Simulation and Design 3: Enhancing
Understanding, and Extracting Knowledge from Data - Session 5 -
08:00 - 11:40

Chair(s): Ankur Jain

09:20 115§ Incorporating GIS Data into a Battery
Performance Model for Electric and Hybrid-
Electric Buses — E. E. Eggleton and D. T.

Schwartz (University of Washington)

Visualization Output

0.08

0.18

3 | nafle
1ap, either within a notebook or saved
Hlected routes and road grade.
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=
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m Enrollment

Enrollment by unit
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Options student outcomes %

* Qutcomes for degrees granted (CHEME)
— Most MS are two years (thesis) so limited data

19 | MS

5  pmD

Industry

PhD program elsewhere

Graduated in 2019

Data Scientist in chem. field

Data Scientist outside chem.
Law school



Future

#

* Diversification from molecules
— Controls, operations, process analytics
— Industry 4.0, 10T, online decision making
* Challenges
— How to structure sequencing of new courses
— How to offer this to our undergrads (4+17?)
* Create Data Science Options in
— MolES (done, May 2019)

— Chemistry (in progress)
— MSE (in progress)



UNIVERSITY of WASHINGTON
CHEMICAL ENGINEERING

KNOWLEDGE AND SOLUTIONS
FORA CHANGING WORLD

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

DATA SCIENCE TRACK

UW CHEMICAL ENGINEERING DATA SCIENCE PROGRAM

UW's ChemE Data Science track offers students with a

background in chemical engineering, or a related field, applied

data science instruction highly contextualized in chemical

engineering and molecular science. Topics of instruction & .
practice include machine learning, cloud & high performance 2 O 2 O C | a S S W I | I
computing, Python scientific programming, statistics and

computational molecular science. Students complete their real .

world training with a team-based capstone project to cement b e O u r‘ fl rst ye a r‘

their skills and help build a data science portfolio to enable
success in a competitive workforce.

WHY DATA SCIENCE & CHEMICAL ENGINEERING? Of t h I S n O n -

All of engineering & science is experiencing the Data Science R

revolution. Chemical Engineering is at the forefront of Data t h e S I S d a ta
Science as a result of the constant streams of big data from

industrial sensors, robotics and advanced instrumentation.

To be competitive in today’s advanced workforce and academic ‘ 1 t k
environments, Chemical Engineers need to understand how ) >, S C I e n Ce ra C

to efficiently manage, process, and provide critical decision “

support in response to an ever expanding stream of incoming

data. UW’'s Chemical Engineering track in Data Science -, :
provides real world training & experience. '

LEARN MORE & APPLY
www.cheme.washington.edu




More info & future directions %

* The course materials are all open source and
available online in our GitHub repository (BSD)

— https://github.com/UWDIRECT/UWDIRECT.github.io
— Lectures, homework assighments, some videos

e We need more ChemE Data Scientists!
77\127
0 \\

ChemE Data Scientist
Knows transport, thermodynamics and machine learning



https://github.com/UWDIRECT/UWDIRECT.github.io
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Student thoughts

e “DIRECT is a multidimensional and

interdisciplinary training program that teaches
students effective communication, good
coding practices, team building, and the core
fundamentals of data science. With multiple
opportunities for students to engage in data
science related research outside of their field
of expertise, students are forced to tackle
difficult, real-world problems in team settings
with industry, national labs, and academia.”



