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Common Elements of Undergraduate Reaction Engineering
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• Reaction Rate 
• Reactor Sizing
• Rate Laws 
• Isothermal Reactor Design 
• Nonisothermal Reactor Design 
• Analysis of Rate Data
• Multiple Reactions
• Reaction Mechanisms 
• Catalysis and Catalytic Reactors
• External Mass Transfer
• Internal Mass Transfer 
• Residence Time Distributions



Pedagogical value of analytical solutions
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• Reaction Rate 
• Reactor Sizing
• Rate Laws 
• Isothermal Reactor Design 
• Nonisothermal Reactor Design 
• Residence Time Distributions
• Analysis of Rate Data
• Multiple Reactions
• Reaction Mechanisms 
• Catalysis and Catalytic Reactors
• External Mass Transfer
• Internal Mass Transfer 

Couple reactor design 
equation and rate law

Express in terms of 
conversion

Solve analytically
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Assumptions leading to analytical solutions
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Fig. 6. Initial rate as a function of 1-hexene concentration obtained experimen-
tally for methanol (2), acetonitrile (F), and acetone (Q) with 0.7 M H2O2,
4 M H2O at 308 K.

Fig. 7. Initial rate as a function of hydrogen peroxide concentration obtained
experimentally for methanol (2), acetonitrile (F), and acetone (Q) with 0.8 M
1-hexene and 4 M H2O at 308 K.

A similar dependence of the initial rate on the hydrogen per-
oxide concentration was observed when the 1-hexene and water
concentrations were held constant at 0.8 and 4 M, respectively.
Similar to the results when 1-hexene was varied, the highest ini-
tial rates were observed for the methanol system, followed by
acetonitrile and then acetone, as shown in Fig. 7.

In the case where the 1-hexene and hydrogen peroxide con-
centrations were constant at values of 0.9 and 0.2 M, respec-
tively, but the water concentration was varied, the initial rates
were found to be approximately independent of the bulk water
concentration, as depicted in Fig. 8. As in the previous cases,
the initial rates were highest in methanol, followed by acetoni-
trile and acetone.

3.6. Reaction mechanism

Based on the reaction kinetics data, the lack of measurable
adsorption of 1-hexene on the active site, and current knowl-
edge of the active site species in the literature, an Eley–Rideal-
type reaction mechanism was proposed to capture the reaction

Fig. 8. Initial rate as a function of water concentration obtained experimentally
for methanol (2), acetonitrile (F), and acetone (Q) with 0.9 M 1-hexene and
0.2 M H2O2 at 308 K.

kinetics data, as shown in Fig. 9. The titanium site first reacts
with a hydrogen peroxide molecule to form the titanium hy-
droperoxo species, which may or may not be coordinated with
a solvent or water molecule. This titanium hydroperoxo species
then reacts with a physisorbed 1-hexene molecule to form
chemisorbed 1,2-epoxyhexane and water. The 1,2-epoxyhexane
is then desorbed, regenerating the titanium active site. The pro-
posed mechanism also takes into account that water may adsorb
competitively on the titanium site.

3.7. Reaction rate equation

It has been shown that 1-hexene epoxidation in TS-1 is not
diffusion-limited [50]. Thus, assuming that the reaction be-
tween the titanium hydroperoxo species and the physisorbed
1-hexene is the rate-limiting step and that all other steps are in
quasi-equilibrium, the following reaction rate equation was de-
rived:

(1)r =
k2[∗total](K1[O][H ] − [W ][E]

K2K3
)

1 + K1[O] + [E]
K3

+ [W ]
K4

,

where [O], [H ], [W ], and [E] refer to the intraporous con-
centrations of hydrogen peroxide, 1-hexene, water, and 1,2-
epoxyhexane, respectively; Ki represents the adsorption equi-
librium constant for elementary step i that is equal to the ratio
of the forward and reverse rate coefficients; and [∗total] refers
to the total number of titanium sites. The assumption of 1-
hexene addition as the rate-determining step (RDS) is consis-
tent with the theoretical calculations of Panyaburapa et al. [49],
whose conclusion was based on energy barriers calculated us-
ing ONIOM energies, and our experimental data, as we show
below. Wells et al. [47] conducted a rigorous free energy analy-
sis for propylene epoxidation and concluded that formation of
the hydroperoxy intermediate is the RDS for a proposed active
site of a Ti defect in a full silanol “nest.” However, assuming
that this step is the RDS for 1-hexene epoxidation would fail to
capture the observed dependence of the rate on 1-hexene con-
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Table 3
Adsorption isotherm parameters from GCMC simulations for water adsorption
in the ternary component system in silicalite at 308 K [56]

Solvent system qsat (molecule/u.c.) b(L/mol) qsatb(dimensionless)

Methanola – – 1.2 × 10−3

Acetonitrile 19.35 0.411 2.5 × 100

Acetonea,b – – 1.5 × 10−3

The 1-hexene concentration was fixed at 0.9 M.
a The adsorption isotherm for water in methanol and acetone was linear over

the entire water concentration range investigated. Therefore, only a single pa-
rameter, qsatb, was regressed.

b Model for acetone was not optimized in the Henry’s law region.

methanol, followed by acetonitrile, and then acetone. The order
in the Henry’s constants (qsatb) was also methanol > acetoni-
trile > acetone, which is in agreement with trends observed in
the literature [33].

The solvent order is consistent with trends observed in the
reaction kinetics as shown in Figs. 6–8. It is very important to
note that TS-1 has a very high internal surface area, so that the
reaction occurs mostly within the pore channels. The greater
adsorption of 1-hexene in the pores means that more reactant
molecules are available to the titanium active sites for reaction
when methanol is used compared with acetonitrile, which in
turn has a higher number of intraporous 1-hexene molecules
than the acetone system.

The adsorption isotherms for water in methanol and ace-
tonitrile solvents were obtained through grand canonical Monte
Carlo simulations [56,58]; the parameters are listed in Table 3.
In methanol solvent, the intraporous water concentration, [W ],
is essentially zero; thus, K ′

4[W ] can be neglected in Eq. (2). Wa-
ter was adsorbed in significant quantities in acetonitrile solvent.
However, the initial rate in acetonitrile (Fig. 8) is independent
of the bulk water concentration, and hence the intraporous wa-
ter concentration. Thus, K ′

4[W ] must be much less than 1 and is
negligible, indicating that K ′

4 is small in acetonitrile. From the
simulations, negligible amounts of water were found to adsorb
in acetone solvent, and the initial rate in acetone also is roughly
independent of the bulk water concentration, so K ′

4[W ] is neg-
ligible for acetone as well. For all three solvents, either K ′

4 or
[W ] (or possibly both for methanol and acetone) is small, and
thus the reaction rate is independent of the bulk water concen-
tration.

We could not establish the hydrogen peroxide adsorption
behavior experimentally. However, as shown in Fig. 7, the de-
pendence of the initial rate on the bulk hydrogen peroxide con-
centration is very similar to that observed for the dependence
on the 1-hexene concentration, in which case the plateau in the
initial rate can be attributed in part to saturation of 1-hexene
in the pores. Thus, we can hypothesize that hydrogen peroxide
physisorption follows the Langmuir form as well:

(4)[O] = qH2O2

bH2O2[Obulk]
1 + bH2O2[Obulk]

.

Whereas the right side of Eq. (2) does not contain [E], the ob-
served concentration of 1,2-epoxyhexane in the bulk, [Ebulk], is
what is measured, so the rate of formation of Ebulk must be re-
lated to the rate shown in Eq. (2). Because very small amounts

(1 × 10−5–3 × 10−4 M) of bulk 1,2-epoxyhexane were ob-
served in the initial rate region, its physisorption was assumed
to follow Henry’s law. Thus, the intraporous concentration of
1,2-epoxyhexane, [E], can be expressed as

(5)[E] = Ke[Ebulk],
where Ke is a dimensionless Henry’s constant for 1,2-epoxy-
hexane. No physisorption parameters for 1,2-epoxyhexane have
been reported in the literature. Commercially available 1,2-
epoxyhexane contains acetic acid and is not reliable for use in
adsorption experiments, because acid-assisted reaction of the
1,2-epoxyhexane with methanol and/or water leads to the for-
mation of ring-opened products, thus leading to the inaccurate
accounting of 1,2-epoxyhexane concentrations. Thus, Ke could
not be determined independently.

Combining Eqs. (3), (4), and (5) with Eq. (2) results in the
following initial rate equation:

(6)r0 = [∗total]
k2

Ke

K1qH2O2bH2O2 [Obulk] qsatb[Hbulk]
1+b[Hbulk]

1 + bH2O2(1 + qH2O2K1)[Obulk]
.

3.9. Reaction rate equation parameter estimation

Five unknown parameters are present in Eq. (6): k2, Ke , K1,
qH2O2 , and bH2O2 . None of these parameters can be determined
independently, but rather two independent groups of parameters
appear—α = k2K1qH2O2 bH2O2

Ke
and β = bH2O2(1 + K1qH2O2)—

such that the initial rate is

(7)r ′
0 =

α[Obulk] qsatb[Hbulk]
1+b[Hbulk]

1 + β[Obulk]
.

Two different cases were considered for regressing parame-
ters α and β . The first case constrained both parameters to
be the same for all three solvents. The importance of this is
that the intrinsic rate coefficient, k2, and the physisorption and
chemisorption of hydrogen peroxide are presumed to be the
same in all three solvents, and thus the observed differences
in rate are attributed to the differences in physisorption of 1-
hexene alone. This is consistent with the hypothesis put forth
by Langhendries et al. [33], who attributed the effect of sol-
vent on 1-hexene epoxidation to adsorption effects. The second
case allowed α and β to be different for each solvent, for a to-
tal of six parameters. A summary of the model parameters and
sum of squares values is provided in Table 4, and the agree-
ment of the model for the two different cases is shown by the
lines in Fig. 11. Clearly, the agreement of the model with the
experimental data improves when the parameters are not con-
strained to be the same for all three solvents. This indicates
that differences in physisorption of 1-hexene without consid-
ering the impact of other species (i.e., hydrogen peroxide and
1,2-epoxyhexane) on its adsorption behavior are not sufficient
to account for the observed differences in reactivity among the
three solvents. This is quantitatively consistent with the general
understanding that the performance of Ti-zeolites more broadly
cannot be explained solely by adsorption equilibria [8].
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Table 4
Parameters and sum of the least squares for each fitting scenario

Case Description Number of
parameters

Sum of least squares
(molecule/site/s)2

Solvent α

(L uc/mol/s/molecule)
β

(L/mol)

1 α and β in Eq. (7 ) constrained to
be equal for all three solvents

2 1.8 1 × 10 −1 1.49 × 10 −1 3.45

2
α and β in Eq. (7 ) allowed to be
different for each solvent

6 4.36 × 10 −2 Methanol 1.53 × 10 −1 2.31
Acetonitrile 6 .8 5 × 10 −2 3.56
Acetone 8 .6 0 × 10 −1 7 .27 × 10 1

Fig. 11. Comparison of the model fits of the initial rate with the experimental data for the different cases delineated in Table 4: (a) variation of 1-hexene concentration,
Case 1; (b) variation of 1-hexene concentration, Case 2; (c) variation of hydrogen peroxide concentration, Case 1; (d) variation of hydrogen peroxide concentration;
Case 2; (e) variation of water concentration, Case 1; (f) variation of water concentration, Case 2.

• Reaction Rate 
• Reactor Sizing
• Rate Laws 
• Isothermal Reactor Design 
• Nonisothermal Reactor Design 
• Residence Time Distributions
• Analysis of Rate Data
• Multiple Reactions
• Reaction Mechanisms 
• Catalysis and Catalytic Reactors
• External Mass Transfer
• Internal Mass Transfer 

Postulate mechanism

Assume rate-
determining step and 

quasi-equilibrium

Solve analytically

Verify concentration 
dependence

Ramachandran et al., J. Catal. 2008, 253, 148-158.
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Simple computer-aided solutions

• Reaction Rate 
• Reactor Sizing
• Rate Laws 
• Isothermal Reactor Design 
• Nonisothermal Reactor Design 
• Residence Time Distributions
• Analysis of Rate Data
• Multiple Reactions
• Reaction Mechanisms 
• Catalysis and Catalytic Reactors
• External Mass Transfer
• Internal Mass Transfer 

• Answer
The material balance for the batch reactor is:

d'j'
j"dt A . A A)

The energy balance can be written as:

'(' )_AlJAH T - T - I..>.H, nA di +

The material and energy balance equations must be solved simultaneously. A convenient form
for solution by numerical techniques is:

dfA
dt

dT
dt

with fA 0 and T 300 K at t O. The results are shown in Figure 9.3.3. From the data
given in Figure 9.3.3, it takes 462 s to reach a fractional conversion of 0.8. Additionally, the
final temperature is 332 K. Notice that the final temperature is not the maximum tempera-
ture achieved during the reaction, in contrast to adiabatic operation.

0.8
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Figure 9.3.3\ Fractional conversion and temperature profiles for the reactor described in Example 9.3.3.
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Figure 9.3.3\ Fractional conversion and temperature profiles for the reactor described in Example 9.3.3.

Couple rate law with 
reactor design equation

Simplify energy 
balance

Numerically solve 
(small) number of 

equations 
simultaneously

Davis and Davis, Fundamentals of Chemical Reaction Engineering, 2003, McGraw Hill.

CHAPTER 9 Nooisotherma l Reactors

Thus, the energy balance equation can be written:

where

The values of and are:

= (2 X 105 g)(l mol/84 g) = 2381 mol

= (9 X 105 g)(l mol1l8 g) = 50000 mol

so that:

= 21

By placing the values for Ai, TO, and the Cp into the energy balance, the result is:

4000 fA
T = 300 + 421.8 7.8 fA

293

EXAMPLE 9.3.3 I

The material balance equation is then solved with k(D being first converted to by sub-
stitution of the energy balance for T:

l -

k = 10
4
exp ( 4000 fA

Rg 300 + )
421.8 - 7.8 fA

The material balance equation must be solved numerically to give t = 1111 s or 18.52 min.
The reactor temperature at this point is obtained directly from the energy balance with fA = 0.5
to give T = 304.8 K.

Consider accomplishing the reaction A + B C in a nonisothermal batch reactor. The re-
action occurs in the liquid phase. Find the time necessary to reach 80 percent conversion if
the coolant supply is sufficient to maintain the reactor wall at 300 K.

Data:

6.Hr -15 kJ/mol

VAH 50 J/(s-K)

Cpr = 150 J/(mol-K)

k

= 0.5 mol/L

= 0.6 mol/L

Cp , CPR 65 J/(mol-K)
100 mol

1 ll20000 J/mol ( I5 X 10-' exp ---
Rg 300

1)lT J (Llmol/s)
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Going beyond simple examples



Moving to more complex reaction networks

Dumesic et al., The Microkinetics of Heterogeneous Catalysis, 1994.

Products

CatalystReactants
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Automated reaction network generation
• Graph Theory
• Reaction Matrix 

Operations
• Connectivity

Scan
• Uniqueness 

Determination
• Property

Calculation
• Termination

Criteria

Reactants
Reaction
Types
Reaction
Rules

k1 k2

k4

k6 k7

k9

k3

k8
k5

k10
k12k13

k15
k16

k14

k17

k11

k18

DG1 DG2 DG3

DG4

DG5
DG7DG6 DG8

DG9

DG10

DG11
DG13 DG12

DG14

DG15
DG16 DG17

DG18
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Connect chemistry and mathematics

ij entries denote the bond order between atoms i and j
ii entries designate the number of nonbonded electrons

associated with atom i

methane methyl radical ethylene

C     0 1 1 1 1
H    1 0 0 0 0
H    1 0 0 0 0
H    1 0 0 0 0
H    1 0 0 0 0

C   0 2 1 0 0 1  
C   2 0 0 1 1 0 
H   1 0 0 0 0 0 
H   0 1 0 0 0 0 
H   0 1 0 0 0 0
H   1 0 0 0 0 0 

C    1 1 1 1
H    1 0 0 0
H    1 0 0 0

C    1 1 1 1
H    1 0 0 0
H    1 0 0 0
H    1 0 0 0
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Chemical reaction as a matrix addition operation
Reaction Operation

H    0 1 0
C    1 0 0
H•  0 0 1

H    0 0 1
C•   0 1 0
H    1 0 0

+ 0 -1  1
-1  1  0
1  0 -1

Reactant
Matrices Reactant

Matrix
Reordered

Reactant Matrix
Product
Matrix

C   0 1 1 1 1
H   1 0 0 0 0
H   1 0 0 0 0
H   1 0 0 0 0
H   1 0 0 0 0

H•  1

C    0 1 1 1 1 0
H   1 0 0 0 0 0
H   1 0 0 0 0 0
H   1 0 0 0 0 0
H   1 0 0 0 0 0
H•  0 0 0 0 0 1

H   0 1 0  0 0 0
C   1 0 0  1 1 1
H•  0 0 1  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0

H   0 0 1  0 0 0
C•  0 1 0  1 1 1
H   1 0 0  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0

H • + CH4 •CH3 + H2



A + B + A + B

C C

D

C

D

+ A + B

E
Generation

1
Generation

2
Generation

3

A + B C D E
Operator 1

Generation
0

P

Operator 2 Operator 3

Operator 1
Operator 2
Operator 3

Operator 1
Operator 2
Operator 3

Operator 1
Operator 2
Operator 3

10

11

…generates complex reaction 
networks automatically 

Repeated application of reaction operators…



A + B + A + B

C C

D

C

D

+ A + B

E
Generation

1
Generation

2
Generation

3

A + B C D E
Operator 1

Generation
0

P

Operator 2 Operator 3

Operator 1
Operator 2
Operator 3

Operator 1
Operator 2
Operator 3

Operator 1
Operator 2
Operator 3

10

retrosynthetic pathways

target
molecule

Repeated application of reaction operators…
…generates complex reaction 

networks automatically from which 
retrosynthesis pathways can be 

mined

12
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Understanding chemistry through cheminformatics

O

OH
OH

OH

O

OH
O

OH
OHOH

OH

O

OH
OOH

OH

OH

O

OH
OHOH

OH
Neutral	Cellobiose

O

CH
OH

OH
OH

OH
O

O

OH
OHOH

OH

‡

51.5 kcal/mol

Free radical pathway

Ionic pathway

96 kcal/mol

80 kcal/mol O

CH+
OH

OH
OH

OH

O-
O

OH
OHOH

OH

O

CH
OH

OH
OH

OH

O
O

OH
OHOH

OH

Reaction Operation
H    0 1 0
C    1 0 0
H•  0 0 1

H    0 0 1
C•   0 1 0
H    1 0 0

+ 0 -1  1
-1  1  0
1  0 -1

Reactant
Matrices Reactant

Matrix
Reordered

Reactant Matrix
Product
Matrix

C   0 1 1 1 1
H   1 0 0 0 0
H   1 0 0 0 0
H   1 0 0 0 0
H   1 0 0 0 0

H•  1

C    0 1 1 1 1 0
H   1 0 0 0 0 0
H   1 0 0 0 0 0
H   1 0 0 0 0 0
H   1 0 0 0 0 0
H•  0 0 0 0 0 1

H   0 1 0  0 0 0
C   1 0 0  1 1 1
H•  0 0 1  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0

H   0 0 1  0 0 0
C•  0 1 0  1 1 1
H   1 0 0  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0

H • + CH4 •CH3 + H2

Probing mechanisms Querying databases Data analytics

310 550907 9824904 11126217 13541300 18506391 21299965 53641043 54728446 67454773

542 556209 10129968 11521075 14088632 18506451 21690925 53799488 55299096 87064939
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86860 643506 10942437 11829386 14693661 20061471 22015955 54001154 55302884 87260299
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193530 1713657 11062673 12179941 17874494 20623870 22845691 54456019 58069330 87617779

237332 2752445 11073541 12305536 17905461 20639037 23198947 54516291 58171640 87885427

439619 5325916 11083857 13009278 18317855 21162484 23628471 54675757 58418994 88465184

534959 6454370 11083904 13327277 18347273 21162581 45039803 54686175 61870903 89987442

Listed by Pubchem CID

 -[CH]-[CHOH]-[CH]- 
 

 

Ulissi et al., Nature Communications, 2017, Volume 8, Article 
number: 14621

most of the rate constants have been calculated with density
functional theory.2-11 Equally important has been the develop-
ment of more and more accurate and precise methods for
measuring the energies of reaction intermediates and the rate
constants for individual elementary steps. Importantly, the
degree of rate control also should be a powerful aid to the
development of more accurate microkinetic models, since it
identifies which intermediates and transition states are most
important to the net rate and thus which species’ standard-state
free energies or rate parameters must be measured or calculated
most accurately. Since the net rate of even complex mechanisms
typically depends on only a handful of such parameters,1,12-14

its use to identify the critical parameters can greatly reduce the
effort involved.

Degree of Rate Control for Elementary Step i, XRC,i

In the past, much effort has been focused on identifying which
elementary steps in complex mechanisms are important to the
overall reaction rate, i.e., in identifying the rate-determining step
or rate-limiting steps. To our knowledge, however, no method
had been developed which unambiguously defines the rate-
determining step until Campbell introduced the degree of rate
control XRC,i for elementary step i,15,16 which he defined as

where the partial derivative is taken holding constant the rate
constants, kj, for all other steps j * i and the equilibrium
constant, Ki, for step i (and all other steps too, since their forward
and reverse rate constants are held fixed). Note that keeping Ki

constant means that ki and k-i both must be varied by equal
factors so that their ratio remains constant. (Within transition-state
theory, this is accomplished by changing only the free energy for
the transition state of step i but no other standard-state free energies
of transition states, reactants, products, or intermediates, since the
rate constant ki equals (kBT/h) exp(-∆G0

i
TS/RT), where ∆G0

i
TS is

the difference in standard-state molar free energy between the
transition state and the reactants, kB is Boltzmann’s constant,
and h is Planck’s constant. The equilibrium constant Ki equals
exp(-∆G0

i
rxn/RT), where ∆G0

i
rxn is the difference in standard-

state molar free energy between the products and the reactants.
Since each of these free-energy changes breaks up into a sum

of an enthalpy contribution (∆H) and an entropy contribution
(-T∆S) as ∆G ) ∆H - T∆S, these rate constants and
equilibrium constants break up into a product of terms that
arises from enthalpy differences and entropy differences:
exp(-∆G/RT) ) exp(-∆H/RT)exp(-∆S/R).

The larger the numeric value of XRC,i is for a given step, the
bigger is the influence of its rate constant on the overall reaction
rate r. A positive value indicates that increasing ki will increase
the net rate r, and such steps are termed rate-limiting steps
(RLS). A negative value indicates the opposite, and such steps
are termed inhibition steps. Campbell showed that for previously
analyzed mechanisms at reaction conditions where it was widely
recognized that there is a single rate-determining step (e.g., in
numerous textbook examples) and the degree of rate control is
equal to 1 for that step and 0 for all other steps. A value of
XRC,i being unity can be taken as a strict definition of step i
being the single rate-determining step.15,16

The degree of rate control seems to be conserved through
the sum rule over all steps i in the mechanism16

Dumesic has proven this rule for any reaction scheme that leads
to a single overall reaction.17

Campbell’s degree of rate control XRC,i can only be quanti-
tatively evaluated for microkinetic models (i.e., models with
estimates of the rate constants for all the elementary steps).
Indeed, it has found wide application in analyzing such
models4,5,9,10,18-37 and even in analyzing kinetic Monte Carlo
models of catalytic mechanisms.11

Fundamentally, eq 1 implies changing the transition state of
elementary step i while nothing else is changed in the reaction
mechanism and determining how this influences the overall rate,
r, of producing some specific product or consuming some
specific reactant. More specifically, the standard state free energy
of transition state i is changed while the energies and free

(2) Reuter, K.; Frenkel, D.; Scheffler, M. Phys. ReV. Lett. 2004, 93,
116105.

(3) Honkala, K.; Hellman, A.; Remediakis, N.; Logadottir, A.; Carlsson,
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synthesis.8 It can even be argued that a software package 
for performing automated network generation is as 
essential to kinetic model development as a stiff 
differential-algebraic equation solver is to model solution 
or a graphing program is to visualizing results.
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TABLE III. Different levels of approximations within the Kikuchi approach
with a cluster up to 3NN of the central site. The middle column presents
the patterns corresponding to the effective fields of Eq. (7). Arabic numer-
als correspond to single-body terms on the sites noted (and all equivalent
sites). Latin numerals correspond to the patterns shown in Fig. 3. The last
column shows the self-consistency equations to be solved for the effective
field parameters. Note that an approximation in a subsequent row in the table
also employs the consistency corrections of all approximations in previous
rows; thus, the K3NNC2 approximation uses all self-consistency equations
noted.

Approximations Patterns Consistency conditions

K3NNC1

2 h�1i = h�2i
8 h�1i = h�8i
14 h�1i = h�14i
(ii) h�1�2i = h�2�3i
(iii) h�1�2i = h�2�8i
(iv) h�1�2i = h�2�14i
(v) h�1�2i = h�8�14i

K3NNC2
(vii) h�1�8i = h�2�4i
(ix) h�1�8i = h�8�9i

(viii) h�1�8i = h�2�15i

When the K3NNC2 approximation (2NN effective mean-field
corrections) is taken into account, the cluster Hamiltonian is
expressed as

HK3NNC2 = HK3NNC1 + p1 *,
3X

i=2

�i(�i+2 + �i+4) +
5X

i=4

�i�i+2+-
+ p2 *,

12X

i=8

�i�i+1 + �13�8+-
+ p3 *,

18X

i=15

�i(�i�13 + �i�11) + �14(�7 + �3)

+ �19(�6 + �2)+- , (36)

where the new ghost effective fields p1, p2, and p2 are obtained
from three new self-consistency equations [see again Table III
and Figs. 3(c) and 3(d)].

In Sec. III, the accuracy of these approximations will be
assessed by comparing their predictions with Monte Carlo
data.

III. COMPARISON BETWEEN APPROXIMATIONS

In this section, we test our approximations against KMC
simulations of the full NO oxidation system and MMC
simulations of oxygen adsorption/desorption.

Figure 4 depicts the average oxygen coverage as a function
of the chemical potential as well as the 1NN pair-correlation as

FIG. 4. (a)–(c) show average oxygen
coverage in monolayers (MLs) as a
function of oxygen chemical potential.
(d)–(f) show 1NN pair correlations as
a function of average oxygen coverage.
In all cases, MMC simulations of oxy-
gen adsorption/desorption for a lattice
of 96 ⇥ 96 sites at T = 480 K are plot-
ted in red squares. We also plot in all
cases results from the MF approxima-
tion as solid black lines. The predictions
of the approximations become progres-
sively closer to MMC results as the clus-
ter size is increased. The BP approxima-
tion is already accurate, and the curves
obtained with the K3NN approxima-
tions are almost indistinguishable on the
plot.
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unresolved.31 It is known that the greatest TOFs of this reaction
occur over the close-packed Pt(111) facets of supported parti-
cles.29,30 Moreover, it has been recognized that, during reaction
conditions, oxygen (denoted as O) dominates the Pt surface,
and high O coverages have been observed to account for NO
oxidation activity.32 Due to short-range repulsive interactions,
the adsorbed oxygen atoms exhibit superlattice ordering, with
their primary location given by threefold face-centered-cubic
(fcc) sites of the Pt(111) hexagonal surface.33,34 Many stud-
ies also show that the barrier of O2 dissociative adsorption on
Pt(111) is strongly affected by the presence of co-adsorbed
oxygen atoms,32,35 while conversion of NO to NO2 has an
activation barrier that is rather insensitive to the presence of
adsorbed oxygen atoms.32 Therefore, an accurate description
of NO oxidation must consider both realistic surface O cov-
erage and its influence on the energetics and kinetics of the
catalytic system.

The first KMC simulations of NO oxidation on Pt(111)
were reported some years ago.36,37 The so-called cluster
expansion (CE) Hamiltonian techniques were implemented
to improve the description of O repulsive interactions on
Pt(111).38 Assuming that O2 dissociation is rate-limiting,
Wu et al.22 combined CE Hamiltonians incorporating long-
range interactions and many-body terms with equilibrium
Monte Carlo simulations for oxygen on Pt(111) and Brønsted-
Evans-Polanyi (BEP) relations for O2 dissociation to esti-
mate catalytic NO oxidation rates. More recently, detailed
KMC simulations of the full reaction mechanism based on
a lattice-gas (LG) Hamiltonian formulation have also been
reported.19 However, Monte Carlo simulations are compu-
tationally expensive, motivating the development of more
efficient approaches.

In our analysis, the catalytic reaction proceeds via the
following steps:19,22,31,32

(10)

(11)

(12)

with ⇤ and O⇤ denoting a vacant adsorption site and adsorbed
oxygen atoms, respectively. The last reaction denotes diffu-
sion of O⇤ between neighboring adsorption sites. We adopt
the assumptions by Wu et al.22,32 in which reaction step (10)
is rapid and reaction step (11) is the rate-limiting process. We
assume that, in agreement with the low barriers for O⇤ diffusion
on Pt(111),23 the oxygen atoms diffuse very fast on the surface.
This ensures oxygen adlayer equilibration and the applicabil-
ity of the lattice-gas Hamiltonian formulation described above
for the calculation of average properties. Moreover, we assume
an equilibrated interconversion between NO and NO2 which
allows us to relate the chemical potential of surface oxygen to
that of the gas phase species as

µO⇤ = µNO2 � µNO = Go
NO2
� Go

NO + kBTln
PNO2

PNO
, (13)

where Go
X is the standard state Gibbs free energies for species

X at 1 bar, T is temperature, and kB is the Boltzmann

constant. The Gibbs free energies are calculated from the NIST
Chemistry WebBook.39 From all previous assumptions, one
can deduce that oxygen coverage on the surface is set by
the pressure ratio of NO2 to NO. It is also straightforward
to conclude that because the O2 dissociative adsorption/O⇤

associative desorption step is the rate limiting process, the NO
oxidation rate or TOF is determined by the overall reaction
rate of chemical step (11). The assumptions behind Eq. (13)
are based on kinetic observations by Getman et al.32 In partic-
ular, their experimental results show that while the rates of O2
and NO2 dissociations are comparable at low oxygen cover-
age, NO2 dissociation is many orders of magnitude faster at O
coverages typical of NO oxidation catalysis. This indicates that
O2 dissociation can actually be considered as a rate-limiting
process under these conditions, and the chemical potential of
oxygen on the surface can be equated to the difference of
the chemical potentials of NO and NO2. Such an assumption,
combined with a first-principles-based cluster expansion, was
subsequently successful to reproduce observed O coverages
and recovered NO oxidation rates and reaction orders in good
agreement with experiments (see, for example, the work of
Wu et al.22). However, we anticipate that Eq. (13) may not
necessarily hold at a very low coverage, where it is believed
that the oxidation of NO is not fast any more.40

In Sec. II C, we apply the methodology described in
Sec. II A to calculate the total NO oxidation rate from equilib-
rium configurations of O⇤ on a Pt(111) surface at catalytically
relevant ranges of µO⇤ and temperature T.

C. Cluster mean-field approach to NO oxidation
and NO2 reduction

Let us define a hexagonal lattice formed by the NL fcc
sites of a Pt(111) surface. On this lattice, the average station-
ary overall reaction rate or TOF is the superposition of the
corresponding overall reaction rates of the elementary reaction
steps. In our case, these elementary reaction steps are O2 dis-
sociative adsorption and O⇤ associative desorption. Therefore,
one can define the average overall reaction rate as

TOF = Rads + Rdes, (14)

where Rads and Rdes denote the average overall adsorption and
desorption rates, respectively.7,41,42 From Eq. (6), we can get
the intensive TOF (normalized per site) as

Rads =
2

NL

X

��

P�k�� , (15)

where in the summation k�� = kads
�� > 0 if � can originate

from � by the adsorption of two oxygen atoms, otherwise
k�� = 0. Similarly, for oxygen associative desorption, one has
that

Rdes =
�2
NL

X

��

P�k�� , (16)

where, as before k�� = kdes
�� > 0 when, in the summation,

configuration � can originate from configuration � by the
desorption of two oxygen atoms from the surface.

The local rate constants of O2 dissociative adsorption
in configuration � are necessarily influenced by interactions
between or with adsorbed oxygen species, and thus, they are
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Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chem-
ical processes. The majority of microkinetic models employ mean-field approximations, which lead
to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates.
On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time
stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but
at a significant computation cost. In this work, we use the so-called cluster mean-field approach
to develop higher order approximations that systematically increase the accuracy of kinetic mod-
els by treating spatial correlations at a progressively higher level of detail. We further demonstrate
our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral
interactions and construct a sequence of approximations of increasingly higher accuracy, which
we compare with KMC and mean-field. The latter is found to perform rather poorly, overesti-
mating the turnover frequency by several orders of magnitude for this system. On the other hand,
our approximations, while more computationally intense than the traditional mean-field treatment,
still achieve tremendous computational savings compared to KMC simulations, thereby opening the
way for employing them in multiscale modeling frameworks. 2017 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4991690]

I. INTRODUCTION

Heterogeneously catalyzed reactions are widely used in
the chemical industry, but also in everyday applications. Exam-
ples of such applications range from petroleum refining to
automotive emission control.1 In this type of catalysis, the
reactants adsorb onto the catalyst surface, via the formation of
chemical or physical bonds. After surface reaction, the prod-
uct desorbs from the surface and diffuses away.2,3 Clearly, the
presence of the catalyst provides lower energy pathways or
alternative elementary steps to get the desired chemical prod-
uct from that in its absence. That is why there is a continued
interest in the chemical industry and in academia to develop
more active, selective, stable, and less expensive catalysts.4

However, the development of such novel catalysts is not an
easy task. A central aspect of this endeavor is to understand the
elementary reaction steps and model the dynamics of catalytic
processes. To this end, kinetic modeling approaches, such
as microkinetic mean-field (MKM) models or the so-called
kinetic Monte Carlo (KMC) simulation, are of paramount
importance.

MKM models of chemical kinetics as well as KMC simu-
lations have indeed proved very useful in studying elementary
processes occurring on reactive surfaces.5–7 From a funda-
mental viewpoint, both approaches originate from the same
Markovian master equation (MME) for the time evolution of

a)m.stamatakis@ucl.ac.uk

the catalytic system.8 The MME is derived from first principles
and its transition probabilities or rate constants are computed
with quantum chemical methods.7,9 General MKM models
result by applying a system-size expansion, thereby focusing
on the behavior of the master equation at the thermodynamic
limit of very large lattices. In this limit, stochastic fluctuations
become negligible and one can formulate ordinary differential
equations (ODEs) that describe the temporal evolution of the
average surface coverage.10 Instead, KMC simulations provide
trajectories (stochastic realizations) whose statistics follow the
master equation.11,12

Although traditional MKM models are highly efficient,
they may lead to inaccurate predictions because they ignore
details about the spatial correlations in the adlayer. Such corre-
lations can arise from slow diffusion in tandem with reaction or
from adsorbate-adsorbate lateral interactions.13–15 An exam-
ple of the former case is CO oxidation on RuO2(110).13 In
this situation, a microkinetic model incorporating the cor-
rect expressions of the pair probabilities of finding vacan-
cies or adatoms in neighboring sites is enough to yield
results in quantitative agreement with KMC.14,15 A different
route is to numerically approximate the solution of the high-
dimensional MME directly. The tensor train approximation
recently reported by Gel� et al.,16 for solving a MME for the
aforementioned CO oxidation process, is an interesting exam-
ple of this approach. However, as noted by Gel� et al., it is
not-trivial to develop such approximations for other surface
reaction models.

0021-9606/2017/147(2)/024105/12 147, 024105-1 © Author(s) 2017
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Regulation of noise in the expression of a single gene
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Stochastic mechanisms are ubiquitous in biological systems.
Biochemical reactions that involve small numbers of mole-
cules are intrinsically noisy, being dominated by large concen-
tration fluctuations1–3. This intrinsic noise has been
implicated in the random lysis/lysogeny decision of bacterio-
phage-λ4 , in the loss of synchrony of circadian clocks5,6 and in
the decrease of precision of cell signals7 . We sought to quanti-
tatively investigate the extent to which the occurrence of
molecular fluctuations within single cells (biochemical noise)
could explain the variation of gene expression levels between
cells in a genetically identical population (phenotypic noise).
We have isolated the biochemical contribution to phenotypic
noise from that of other noise sources by carrying out a series
of differential measurements. We varied independently the
rates of transcription and translation of a single fluorescent
reporter gene in the chromosome of Bacillus subtilis, and we
quantitatively measured the resulting changes in the pheno-
typic noise characteristics. We report that of these two para-
meters, increased translational efficiency is the predominant
source of increased phenotypic noise. This effect is consistent
with a stochastic model of gene expression in which proteins
are produced in random and sharp bursts. Our results thus
provide the first direct experimental evidence of the biochem-
ical origin of phenotypic noise, demonstrating that the level
of phenotypic variation in an isogenic population can be regu-
lated by genetic parameters.
We selected as our reporter system a single-copy chromosomal
gene with an inducible promoter. As an estimated 50–80% of
bacterial genes are transcriptionally regulated8, this system typi-
fies the majority of naturally occurring genes, allowing our
results to be extended to natural systems. We incorporated a sin-
gle copy of our reporter, the green fluorescent protein gene (gfp),
into the chromosome of B. subtilis. We chose to integrate gfp into
the chromosome itself, rather than in the form of plasmids, as
variation in plasmid copy number9,10 can act as an additional
and unwanted source of noise. Transcriptional efficiency was
regulated by using an isopropyl-β-D-thiogalactopyranoside
(IPTG)–inducible promoter, Pspac, upstream of gfp, and varying
the concentration of IPTG in the growth medium. Translational

efficiency was regulated by constructing a series of B. subtilis
strains (Table 1) that contained point mutations in the ribosome
binding site (RBS) and initiation codon of gfp11. The use of two
different strategies to regulate transcriptional and translational
processes introduces a potential bias in the relative contributions
of these processes to biochemical noise. As a control, we con-
structed four additional strains (Table 2) whose transcription
rates were altered by mutations in the promoter region of the
reporter gene. As described below, both strategies of transcrip-
tional regulation produced similar results.

We measured expression of green fluorescent protein (GFP)
for single cells in a bacterial population using flow cytometry.
Variation in GFP expression from cell to cell (phenotypic noise)
is seen in a histogram (Fig. 1a) showing the protein expression
levels (p) measured during a typical experiment. The histogram
is characterized by a mean value 〈p〉 and a standard deviation σp.
The phenotypic noise strength, defined as the quantity σp

2/〈p〉
(variance/mean), is sensitive to the biochemical sources of sto-
chasticity that we wished to study and is therefore the unit in
which we report our results. We measured phenotypic noise
strength for the four different translational strains as we varied
IPTG concentration between 30 µM (near-basal transcription)
and 1 mM (full operon induction). For example, Fig. 1b shows
flow cytometer results for the four strains at full induction,
whereas Fig. 1c shows the results from a series of flow cytometer
experiments conducted on a single strain (ERT3) as IPTG con-
centration was varied. A summary of all of our experimental
results (Fig. 2a) shows the measured noise strength as a simulta-
neous function of both transcriptional efficiency (varying
[IPTG] in the growth medium) and translational efficiency
(using different strains with mutations in the RBS and initiation
codon). As the addition of IPTG and mutations in the gfp RBS
are not expected to affect normal cellular processes, all contribu-
tions to phenotypic noise remained unchanged throughout our
experiment, except fluctuations in rates of transcription and
translation. The response of phenotypic noise strength to a
change in either translational efficiency (Fig. 2b) or transcrip-
tional efficiency (Fig. 2c) indicates the isolated contribution of
that parameter to the phenotypic noise.

Published online: 22 April 2002, DOI: 10.1038/ng869

Table 1 • Translational mutants: point mutations in the RBS
and initiation codon of gfp

Strain Ribosome binding site Initiation Translational 
codon efficiency

ERT25 GGG AAA AGG AGG TGA ACT ACT ATG 1.00
ERT27 GGG AAA AGG AGG TGA ACT ACT TTG 0.87
ERT3 GGG AAA AGG TGG TGA ACT ACT ATG 0.84
ERT29 GGG AAA AGG AGG TGA ACT ACT GTG 0.66

Table 2 • Transcriptional mutants: point mutations
in the Pspac promoter

Strain –10 regulatory region Transcriptional efficiency
–10 +1

ERT57 CAT AAT GTG TGT AAT 6.63
ERT25 CAT AAT GTG TGG AAT 1.00
ERT53 CAT AAT GTG TGC AAT 0.79
ERT51 CAT AAT GTG TGA AAT 0.76
ERT55 CAT AAT GTG TAA AAT 0.76
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Stochastic simulations:  Kinetic Monte Carlo
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Theoretical foundations of dynamical Monte Carlo simulations 
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Monte Carlo methods are utilized as computational tools in many areas of chemical physics. In 
this paper, we present the theoretical basis for a dynamical Monte Carlo method in terms of 
the theory of Poisson processes. We show that if: ( 1) a “dynamical hierarchy” of transition 
probabilities is created which also satisfy the detailed-balance criterion; (2) time increments 
upon successful events are calculated appropriately; and (3) the effective independence of 
various events comprising the system can be achieved, then Monte Carlo methods may be 
utilized to simulate the Poisson process and both static and dynamic properties of model 
Hamiltonian systems may be obtained and interpreted consistently. 

1. INTRODUCTION 
Monte Carlo methods are utilized as computational 

tools in many areas of chemical physics.‘*’ Although this 
technique has been largely associated with obtaining static, 
or equilibrium properties of model systems, Monte Carlo 
methods may also be utilized to study dynamical phenome- 
na. Often, the dynamics and cooperativity leading to certain 
structural or configurational properties of matter are not 
completely amenable to a macroscopic continuum descrip- 
tion. On the other hand, molecular dynamics simulations 
describing the trajectories of individual atoms or molecules 
on potential energy hypersurfaces are not computationally 
capable of probing large systems of interacting particles at 
long times. Thus, in a dynamical capacity, Monte Carlo 
methods are capable of bridging the ostensibly large gap ex- 
isting between these two well-established dynamical ap- 
proaches, since the “dynamics” of individal atoms and mole- 
cules are modeled in this technique, but only in a 
coarse-grained way representing average features which 
would arise from a lower-level result. 

The application of the Monte Carlo method to the study 
of dynamical phenomena requires a self-consistent dynami- 
cal interpretation of the technique and a set of criteria under 
which this interpretation may be practically extended. In 
recent publications,3t4 certain inconsistencies have been 
identified which arise when the dynamical interpretation of 
the Monte Carlo method is loosely applied. These studies 
have emphasized that, unlike static properties, which must 
be identical for systems having identical model Hamilto- 
nians, dynamical properties are sensitive to the manner in 
which the time series of events characterizing the evolution 
of a system is constructed. In particular, Monte Carlo stud- 
ies comparing dynamical properties simulated away from 
thermal equilibrium have revealed differences among var- 
ious sampling algorithms.3” These studies have under- 
scored the importance of utilizing a Monte Carlo sampling 
procedure in which transition probabilities are based on a 
reasonable dynamical model of a particular physical phe- 
nomenon under consideration, in addition to satisfying the 
usual criteria for thermal equilibrium. Unless transition 
probabilities can be formulated in this way, a relationship 

between Monte Carlo time and real time cannot be clearly 
demonstrated. In many Monte Carlo studies of time-depen- 
dent phenomena, results are reported in terms of integral 
Monte Carlo steps, which obfuscate a definitive role of time. 
Ambiguities surrounding the relationship of Monte Carlo 
time to real time preclude rigorous comparison of simulated 
results to theory and experiment, needlessly restricting the 
technique. Within the past few years, the idea that Monte 
Carlo methods can be utilized to simulate the Poisson pro- 
cess has been advanced in a few publications”* and some 
Monte Carlo algorithms which are implicitly based on this 
assumption have been utilized.lS4 This is an attractive pros- 
pect, since within the theory of Poisson processes, the rela- 
tionship between Monte Carlo time and real time can be 
clearly established. 

In this paper, we shall focus on dynamical interpreta- 
tion of the Monte Carlo method. We shall show that if three 
criteria are met, namely, that transition probabilities reflect 
a “dynamical hierarchy” in addition to satisfying the de- 
tailed-balance criterion, that time increments upon success- 
ful events are formulated correctly in terms of the micro- 
scopic kinetics of the system, and that the effective 
independence of various events can be achieved, then the 
Monte Carlo method may be utilized to simulate effectively 
a Poisson process. Within the theory of Poisson processes, 
both static and dynamic properties of Hamiltonian systems 
may be consistently simulated with the benefit that an exact 
correspondence between Monte Carlo time and real time can 
be established in terms of the dynamics of individual species 
comprising the ensemble. We shall demonstrate the formal- 
ism by considering the approach to and the attainment of 
Langmuir adsorption-desorption equilibrium in a lattice- 
gas system. We shall also discuss straightforward extension 
of the methodology to more complicated systems of interact- 
ing particles. 

II. DYNAMICAL INTERPRETATION OF THE MONTE 
CARLO METHOD 

Under a dynamical interpretation,’ the Monte Carlo 
method provides a numerical solution to the Master equa- 
tion 
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An exact method is presented for numerically calculating, within the framework of the 
stochastic formulation of chemical kinetics, the time evolution of any spatially homog- 
eneous mixture of molecular species which interreact through a specified set of coupled 
chemical reaction channels. The method is a compact, computer-oriented, Monte Carlo 
simulation procedure. It should be particularly useful for modehng the transient be- 
havior of well-mixed gas-phase systems in which many molecular species participate in 
many highly coupled chemical reactions. For “ordinary” chemical systems in which 
fluctuations and correlations play no significant role, the method stands as an alter- 
native to the traditional procedure of numerically solving the deterministic reaction 
rate equations. For nonlinear systems near chemical instabilities, where fluctuations and 
correlations may invalidate the deterministic equations, the method constitutes an effic- 
ient way of numerically examining the predictions of the stochastic master equation. 
Although fully equivalent to the spatially homogeneous master equation, the numerical 
simulation algorithm presented here is more directly based on a newly defined entity called 
“the reaction probability density function.” The purpose of this article is to describe 
the mechanics of the simulation algorithm, and to establish in a rigorous, a priori manner 
its physical and mathematical validity; numerical applications to specific chemical 
systems will be presented in subsequent publications. 

1. INTRODUCTION 

The time evolution of a spatially homogeneous mixture of chemically reacting 
molecules is usually calculated by solving a set of coupled ordinary differential 
equations. If there are N chemically active molecular species present, there will 
be N differential equations in the set; each equation expresses the time-rate-of- 
change of the molecular concentration of one chemical species as a function of the 
molecular concentrations of all the species, in accordance with the stoichiometric 

forms and reaction constants of those chemical reactions which involve that 
particular species. This traditional method of analysis is based upon a deterministic 
formulation of chemical kinetics, in which the reaction constants are viewed as 
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Teaching kMC to undergraduates

Figure 4.37: Deterministic simulation of reaction A + B <-> C 
compared to stochastic simulation
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Software for kinetic Monte Carlo

kmos
kMC on steroids: A vigorous attempt to make lattice kinetic Monte
Carlo modeling as fast as possible.
kmos is being developed in the context of heterogeneous catalysis but might be of use in
other applications as well. kmos wants to enable you to create first-principles kinetic
Monte Carlo models faster and with less pain.
Some projects are using kmos already.

Authors
Max J. Hoffmann (mjhoffmann@gmail.com)

Co-developers
Mie Andersen

Michal Bajdich

Andreas Garhammer

Juan M. Lorenzi

Sebastian Matera

Download
You can download this project in either zip or tar formats.

You can also clone the project with Git by running:

$ git clone git://github.com/mhoffman/kmos

Documentation

get the source code on GitHub : mhoffman/kmos

kmos - A General Lattice Kinetic Monte Carlo Simulation Framework http://mhoffman.github.io/kmos/
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A Practical Guide to Surface Kinetic
Monte Carlo Simulations
Mie Andersen*, Chiara Panosetti and Karsten Reuter

Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Garching, Germany

This review article is intended as a practical guide for newcomers to the field of kinetic

Monte Carlo (KMC) simulations, and specifically to lattice KMC simulations as prevalently

used for surface and interface applications. We will provide worked out examples using

the kmos code, where we highlight the central approximations made in implementing a

KMC model as well as possible pitfalls. This includes the mapping of the problem onto a

lattice and the derivation of rate constant expressions for various elementary processes.

Example KMC models will be presented within the application areas surface diffusion,

crystal growth and heterogeneous catalysis, covering both transient and steady-state

kinetics as well as the preparation of various initial states of the system. We highlight the

sensitivity of KMC models to the elementary processes included, as well as to possible

errors in the rate constants. For catalysis models in particular, a recurrent challenge is

the occurrence of processes at very different timescales, e.g., fast diffusion processes

and slow chemical reactions. We demonstrate how to overcome this timescale disparity

problem using recently developed acceleration algorithms. Finally, we will discuss how to

account for lateral interactions between the species adsorbed to the lattice, which can

play an important role in all application areas covered here.

Keywords: kinetic Monte Carlo, lattice gas model, surface diffusion, heterogeneous catalysis, crystal growth,

sensitivity analysis, lateral interactions

1. INTRODUCTION

As the witty name suggests, Monte Carlo is a wide umbrella term that covers a numerous family
of approaches with one simple central idea in common: the resolution of complex problems
using random numbers. Given the versatility of the concept, it is no surprise that Monte Carlo
based approaches have gained popularity in computational chemistry and materials science
(cf. e.g., Frenkel and Smit, 2001), most prominently for the simulation of ensemble properties
usingMetropolis Monte Carlo, or methods derived from the latter such as Basin Hopping for global
geometry optimization. In addition to equilibrium properties, the Monte Carlo idea can also be
exploited to tackle dynamical properties. In this sense, a number of approaches emerged over the
decades under different names, until the term kinetic Monte Carlo (KMC) became universally used
in this context.

Nowadays KMC is a popular tool to describe a variety of phenomena related to e.g., transport
(diffusion), structures and properties of materials (e.g., crystal growth) or equilibrium and non-
equilibrium chemistry (catalysis). As will become apparent throughout the text, in the context
of atomistic simulations KMC can be considered as a form of coarse graining. This renders
it particularly suitable to find its place in hierarchical multiscale modeling approaches, where
information at different levels of accuracy or detail is integrated to provide a more comprehensive
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Example: artificial neural networks applied to lignin pyrolysis

Hough et al., Computers and Chemical Engineering, 2017, 104, 56-63.

Black Box
Learning complex, non-
linear and multivariate 

relationships
Inputs
Tmax
Heating rate
Carbon mass fraction in 
feed
Hydrogen mass fraction 
in feed

Outputs 

• Choose relevant input and output variables for lignin pyrolysis

21



• Choose relevant input and output variables for lignin pyrolysis
• Choose neural network architecture and learning algorithms

Full net: predict all 30 
output measures

Single net: predict single 
output measure, repeat x 
30

Hough et al., Computers and Chemical Engineering, 2017, 104, 56-63.

Example: artificial neural networks applied to lignin pyrolysis

22



• Choose relevant input and output variables for lignin pyrolysis
• Choose neural network architecture and learning algorithms
• Train neural networks

Full net results

Example: artificial neural networks applied to lignin pyrolysis

Hough et al., Computers and Chemical Engineering, 2017, 104, 56-63.23



• Choose relevant input and output variables for lignin pyrolysis
• Choose neural network architecture and learning algorithms
• Train neural networks

Full net results

3-4 orders of magnitude speedup compared to kinetic model based on rate 
equations and ODEs

Example: artificial neural networks applied to lignin pyrolysis

Hough et al., Computers and Chemical Engineering, 2017, 104, 56-63.24



The Confluence of Kinetic Modeling and Data Science

Hough et al., Computers and Chemical Engineering, 2017, 104, 56-63.
Hough et al., Ind. Eng. Chem. Res., 2016, 55 (34), 9147–9153

• Choose relevant input and output variables for lignin pyrolysis
• Choose neural network architecture and learning algorithms
• Generate training and valuation data from kinetic model

o 250,000 parameter combinations to cover input parameter space
o Tmax = 450-900 °C
o Heating rate = 5-120,000 °C/min
o 56-67.8 wt% carbon in feed
o 5.4-6.6 wt% hydrogen in feed

o Ran combinations through kinetic model to get outputs
o Training set: 140,000 pairs
o Validation set: 60,000 pairs
o Test set: 50,000 pairs

• Train neural networks

25
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Teaching data science methods: starting with Python

Introduction to data science at Northwestern
• 10-day programming bootcamp focusing on 

Python
• Opportunity to learn the programming skills 

needed to collect, process, and analyze data



Beyond A    B: Computational Approaches for Education in Reaction 
Engineering and Kinetics of Complex Systems 

Reaction Operation
H    0 1 0
C    1 0 0
H•  0 0 1

H    0 0 1
C•   0 1 0
H    1 0 0

+ 0 -1  1
-1  1  0
1  0 -1

Reactant
Matrices Reactant

Matrix
Reordered

Reactant Matrix
Product
Matrix

C   0 1 1 1 1
H   1 0 0 0 0
H   1 0 0 0 0
H   1 0 0 0 0
H   1 0 0 0 0

H•  1

C    0 1 1 1 1 0
H   1 0 0 0 0 0
H   1 0 0 0 0 0
H   1 0 0 0 0 0
H   1 0 0 0 0 0
H•  0 0 0 0 0 1

H   0 1 0  0 0 0
C   1 0 0  1 1 1
H•  0 0 1  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0

H   0 0 1  0 0 0
C•  0 1 0  1 1 1
H   1 0 0  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0
H   0 1 0  0 0 0

H • + CH4 •CH3 + H2

Network generation Stochastic simulations Machine learning

10

)/1ln()/1( 10 ra=t

Calculate individual and 
total rates, an and ao

Determine reaction channel (μ) 
and timestep (t) stochastically

Increment counter and t by t
and update concentrations 

based on occurrence of 
reaction µ

Initialize concentrations, 
time, and counter

å å
-

= =

£<
1

1 1
02

µ

n

µ

n
nn aara

ao

a1 a2 a3 a4

ao

a1 a2 a3 a4a1 a2 a3 a4

Chain lengths 
vectorized, 

reacting chains 
randomly 
selected

27



28

Acknowledgments

Rex Reklaitis, Purdue University

Wayne Bequette, Rensselaer Polytechnic Institute

Jim Rawlings, University of California Santa Barbara

Jim Pfaendtner, University of Washington


