
The need to solve sets of ordinary differential equations arises
in a number of  chemical engineering applications (1). The
ability to carry out these calculations within a spreadsheet
environment (2, 3, 4) has a number of advantages:

1. The spreadsheet is a well known and commonly used
environment for carrying out chemical engineering cal-
culations.

2. The input and output capabilities of the spreadsheet can
be utilized.

3. No additional programs or systems need to be learned.

What is required, however, is the use of Visual Basic for
Applications (VBA) which is supplied as an integral part of
Excel 7.0 (5).

Ordinary Differential Equations- Initial Value
Problems

There are a number of algorithms that may be used to solve
ordinary differential equations with specified initial condi-
tions. For problems which are not stiff the 4th order Runge
Kutta method is very popular. A step size (h) must be speci-
fied.
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Figure 1 is a VBA implementation of the 4th Order Runge
Kutta algorithm for up to five simultaneous differential equa-
tions. The array function(2) Rk4x has the following inputs:

1. The stepsize, h
2. The current value of the independent variable, x
3. The current values of the dependent variables.
4. A parameter vector, prm.

The output of the function is the array  DDD(1) to DDD(7).
It consists of

1. The new stepsize (can be the same value as the current
stepsize).

2. The new value of the independent variable.
3. The new values of the dependent variables.

The Rk4x function is implemented on the spreadsheet by
entering

=Rk4x(h, x, y1, y2, y3, y4, y5, prm)

where
h = step size
x  = independent variable
y1..y5 = dependent variables
prm = a parameter vector of any length

A separate function (Rhs) must be written by the user to
specify the right hand sides of the equations.

An Example Problem

Three tanks (6) are set up so that the flow out of the top tank
into tank 1 is a constant.  The flow through a valve from
tank 1 into tank 2 depends on the height of the liquid and the
flow from tank 2 through a valve also depends on the height
of the liquid in that tank. (see Figure 2).

The following equations apply:
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If a volume of liquid equal to M is added to the second tank,
the problem is to show the response of the height vs time in
the two tanks. Use M = 400 cm3.

Steady state measurements show:

A = 48.65 cm2
h

1s
 = 24.5 cm

h
2s

 = 16.6 cm
q

ins
 = 94.47
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By setting the derivatives equal to 0 (steady state) the values of
C

1
 and C

2
 may be determined.  (C

1
 = 19.085, C

2
 = 23.1867)

Figure 3 is a listing of the function Rhs which defines the
right hand sides of the two differential equations. Rhs is called
by Rk4x.

Figure 4 is a listing of the spreadsheet. Row 15 contains the
labels for each of the first four columns.  Row 16 specifies
the integration step size, the total time elapsed and the initial
heights  of the tanks. The following actions are then taken:

1. Columns A17 to D17 must first be selected (highlighted)
with the mouse. The following is entered into the for-
mula bar:

=Rk4x($A16,$B16,$C16,$D16,0,0,0,$B$4)

2. Cntrl+Shift+Enter is then entered.

The new values (at the new time) of the step size, time and
dependent variables will then  appear in row 17. Row 17
may be copied as many times as desired out to a final time.

Figure 5 is a plot of the results shown in the spreadsheet of
Figure 4.

Summary

The integration of sets of differential equations may be per-
formed rapidly and easily using Excel 7.0 and Visual Basic
for Applications. The Rk4x integration routine is part of
the EMR Technology Group Library and may be ordered
from the CACHE Corporation.
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Public Function Rk4x(h,x,y1, y2, y3, y4, y5, prm)

‘Written by EMRosen  10/30/97
‘Copyright © EMR Technology Group

‘h = step size
‘x = independent variable
‘y1, y2, y3, y4, y5 = dependent variables

‘prm a parameter vector of unspecified length
‘prm(1) = Number of Equations Being Integrated

‘kij : i  is the k value, j is the equation number of dependent
variable

‘Output is the Seven Element Vector
‘Actual Output must be pre-selected

Dim DDD(1 To 7)

Dim fff(1 To 5)

Neq = prm(1)

Rtn1 = Rhs(x,y1,y2,y3,y4,y5,prm,fff)

k11 = fff(1)
k12 = fff(2)
k13 = fff(3)
k14 = fff(4)
k15 = fff(5)

Rtrn2 = Rhs(x + 0.5 * h,y1 + 0.5*h*k11,y2 + 0.5*h*k12,y3 +
0.5* h*k13,y4 + 0.5*h*k14,y5 + 0.5* h* k15,prm,fff)

k21 = fff(1)
k22 = fff(2)
k23 = fff(3)
k24 = fff(4)
k25 = fff(5)

Rtrn3 = Rhs(x + 0.5 * h,y1 + 0.5*h*k21,y2 + 0.5*h*k22,y3 +
0.5* h*k23,y4 + 0.5*h*k24,y5 + 0.5* h *k25,prm,fff)

k31 = fff(1)
k32 = fff(2)
k33 = fff(3)
k34 = fff(4)
k35 = fff(5)

Rtrn4 = Rhs(x + h,y1 + h*k31,y2 + h*k32,y3 + h*k33,y4 +
h*k34,y5 + h*k35,prm,fff)

k41 = fff(1)
k42 = fff(2)
k43 = fff(3)
k44 = fff(4)
k45 = fff(5)
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‘Tank Emptying Model – Chem Eng Education Vol 31 No 1
Winter 1997
‘Page 64

‘prm array

‘   prm(1) = 2
‘   prm(2) – A = 48.65
‘   prm(3) – qins = 94.47
‘   prm(4) – h1s = 24.5
‘   prm(5) – h2s = 16.6

‘   prm(6) – C1 = qins/Sqr(h1s)
‘   prm(7) – C2 = C1 * Sqr(h1s/h2s)

Public Function Rhs(x,y1,y2,y3,y4,y5, prm, fff)

fff(1) = prm(3) / prm(2) –prm(6) * Sqr(y1) / prm(2)
fff(2) = prm(6) / prm(2) * Sqr(y1) – prm(7) / prm(2) * Sqr(y2)

fff(3) = 0
fff(4) = 0
fff(5) = 0

Rhs = 0

End Function

Figure 3.  Listing of RHS Function

‘Values of new h and new x

   DDD(1) = h
   DDD(2) = x + h

‘First Independent Variable

   DDD(3) = y1 + (h / 6) * (k11 + 2 * k21 + 2 * k31 + k41)

‘Second Independent Variable

   DDD(4) = y2 + (h / 6) * (k12 + 2 * k22 + 2 * k32 + k42)

‘Third Independent Variable

   DDD(5) = y3 + (h / 6) * (k13 + 2 * k23 + 2 * k33 + k43)

‘Fourth Independent variable

   DDD(6) = y4 + (h / 6) * (k14 + 2 * k24 + 2 * k34 + k44)

‘Fifth Independent variable

   DDD(7) = y5 + (h / 6) * (k15 + 2 * k25 +2* k35 + k45)

Rk4x = DDD

   End Function

Figure 1.  Listing of Rk4x Function

Figure 2.  Configuration of Two Tanks



Emptying Tanks – “A Simple Process Dynamics Experience” Chem Eng Education Vol 31 No. 1 Winter 1997

Parameters
No of Equations                    2
A             48.65
qins             94.47
h1s               24.5
h2s               16.6
C1 19.08582218
C2 23.18674957
M                400

     Step Size           Time(Sec) Tank 1 (cm) Tank 2 (cm) Row 15
4 0 32.72199383               16.6 Row 16
4 4 31.59251323 17.60552549 Row 17
4 8 30.61014698 18.27507339
4 12 29.75763201 18.69452998
4 16 29.01929699 18.92870841
4 20 28.38101284 19.02716033
4 24   27.8301214   19.0279769
4 28 27.35534762 18.96043795
4 32 26.94670087 18.84695034
4 36 26.59537025 18.70451896
4 40 26.29361793 18.54589244
4 44 26.03467378 18.38047084
4 48 25.81263394 18.21503234
4 52 25.62236487 18.05431734
4 56 25.45941422   17.9014983
4 60 25.31992901 17.75855627
4 64 25.20058137 17.62658102
4 68 25.09850182 17.50600839
4 72 25.01121971 17.39680619
4 76 24.93661045 17.29861832
4 80 24.87284903 17.21087492
4 84 24.81836923 17.13287547
4 88 24.77182801 17.06385032
4 92 24.73207449 17.00300536
4 96 24.69812306 16.94955348
4 100 24.66913004 16.90273607
4 104   24.6443736 16.86183687
4 108 24.62323635 16.82619015
4 112 24.60519042 16.79518478
4 116 24.58978461 16.76826528
4 120 24.57663331 16.74493091
4 124 24.56540709 16.72473333
4 128 24.55582449  16.7-727335
4 132 24.54764512 16.69219736
4 136   24.5406637 16.67919333
4 140   24.5347049 16.66798699
4 144 24.52961903 16.65833794
4 148 24.52527828   16.6500361
4 152 24.52157354 16.64289828
4 156 24.51841166 16.63676511
4 160 24.51571312 16.63149816

Figure 4.  Spreadsheet
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Figure 5.  Graph of Tank Dynamics
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Session 12 of the Chemical Engineering Summer School at
Snowbird, Utah on August 13, 1997 was concerned with
“The Use of Mathematical Software in Chemical Engineer-
ing.” This session provided a major overview of three ma-
jor mathematical software packages (MathCAD,
Mathematica, and POLYMATH), and a set of ten problems
was distributed that utilizes the basic numerical methods in
problems that are appropriate to a variety of chemical engi-
neering subject areas. The problems are titled according to
the chemical engineering principles that are used, and the
numerical methods required by the mathematical modeling
effort are identified. This problem set is summarized in
Table 1.

After the ASEE Summer School, three more sets of solu-
tions were provided by authors who had considerable expe-
rience with additional mathematical software packages. The
current total is now six packages, and the packages (listed
alphabetically) and authors are given below.

Excel - Edward M. Rosen, EMR Technology Group

Maple - Ross Taylor, Clarkson University

MathCAD - John J. Hwalek, University of Maine

Mathematica - H. Eric Nuttall, University of New Mexico

MATLAB - Joseph Brule, John Widmann, Tae Han, and
Bruce Finlayson, University of Washington

POLYMATH - Michael B. Cutlip, University of Connecti-
cut and Mordechai Shacham, Ben-Gurion University of the
Negev

The complete problem set has now been solved with the
following mathematical software packages: Excel, Maple,
MathCAD, Mathematica,  MATLAB,  and Polymath. As a
service to the academic community, the CACHE Corpora-
tion provides this problem set as well as the individual pack-
age writeups and problem solution files for downloading
on the WWW at http://www.che.utexas.edu/cache/. The
problem set and details of the various solutions (about 300
pages) are given in separate documents as Adobe PDF files.
The problem solution files can be executed with the par-
ticular mathematical software package. Alternately, all of

these materials can also be obtained from an FTP site at the
University of Connecticut: ftp.engr.uconn.edu/pub/ASEE/

Bruce Finlayson is also planning to distribute a CD-ROM
containing these materials to Chemcial Engineering Depart-
ments in the near future on behalf of the ASEE Summer
School.  These CD-ROMs will also be available from CACHE
at a nominal price.

A recent article on this problem set has appeared in Com-
puter Applications in Engineering Education, Vol. 6, No. 3,
pp 169-180 (1998) from which this material is adapted.

Use of the Problem Set

The complete problem writeups from the various packages
allow potential users to examine the detailed treatment of a
variety of typical problems. This method of presentation
should indicate the convenience and strengths/weaknesses of
each of the mathematical software packages. The problem
files can be executed with the corresponding software pack-
age to obtain a sense of the package operation. Parameters
can be changed, and the problems can be resolved. These ac-
tivities should be very helpful in the evaluation and selection
of appropriate software packages for personal or educational
use.

Additionally attractive for chemical engineering faculty is that
individual problems from the problem set can be easily inte-
grated into existing coursework. Problem variations or even
open-ended problems can quickly be created. This problem
set and the various writeups should be helpful to chemical
engineering faculty who are continually faced with the selec-
tion of a mathematical problem solving package for use in
conjunction with their courses.
_____________________

Excel is a trademark of Microsoft Corporation (http://www.microsoft.com)
Maple is a trademark of Waterloo Maple, Inc. (http://www.maplesoft.com)
MathCAD is a trademark of Mathsoft, Inc. (http://www.mathsoft.com)
Mathematica is a trademark of Wolfram Research, Inc.
(http://www.wolfram.com)
MATLAB is a trademark of The Math Works, Inc.
(http://www.mathworks.com
POLYMATH is copyrighted by M. Shacham and M. B. Cutlip
(http://www.polymath-software.com)

Educational Materials Available Through the
CACHE WWW Site

A Collection of ten numerical problems in chemical engineering solved by
various mathematical software packages

Michael B. Cutlip, University of Connecticut
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Table 1.  Problem Set for Use with Mathematical Software Packagesa

SUBJECT AREA PROBLEM TITLE
MATHEMATICAL

MODEL PROBLEM

Introduction to Ch.E.

Introduction to Ch.E.

Mathematical Methods

Thermodynamics

Fluid Dynamics

Heat Transfer

Mass Transfer

Separation Processes

Reaction Engineering

Process Dynamics and
Control

Molar Volume and Compressibility
Factor from Van Der Waals
Equation

Steady State Material Balances on
a Separation Train*

Single Nonlinear Equation
1

Vapor Pressure Data Representa-
tion by Polynomials and Equations

Simultaneous Linear
Equations

Polynomial Fitting, Linear
and Nonlinear Regression

2

3

Reaction Equilibrium for Multiple
Gas Phase Reactions*

Simultaneous Nonlinear
Equations 4

Terminal Velocity of Falling
Particles

Single Nonlinear Equation 5

Unsteady State Heat Exchange in a
Series of Agitated Tanks*

Simultaneous ODE’s with
known initial conditions

6

Diffusion with Chemical Reaction
in a One Dimensional Slab

Simulaneous ODE’s with
split boundary conditions

7

Binary Batch Distillation** Simultaneous Differential
and Non-linear Algebraic
Equations

8

Reversible, Exothermic, Gas Phase
Reaction in a Catalytic Reactor”

Simultaneous ODE’s and
Algebraic Equations

9

Dynamics of a Heated Tank with
PI Temperature Control**

Simultaneous Stiff ODE’s 10

a These problems are taken in part from a new book entitled “Problem Solving in Chemical Engineering with Numerical Methods” by
  Mordechai Shacham and Michael B. Cutlip.  See the Announcement on page 22 of this newsletter.
*   Problem originally suggested by H.S. Fogler of the University of Michigan
** Problem preparation assistance by N. Brauner of Tel-Aviv Univeristy
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Excel 95 and its associated Visual Basic For Applications
(VBA) language provide a very substantial computational
capability (1, 2). Nevertheless the ability to transfer out of a
VBA subroutine procedure, execute a module in the DOS
environment and transfer a result back to the spreadsheet
adds substantially to this capability. The shell function of
VBA is a means of carrying this out (3).

FORTRAN Programs

FORTRAN has been broadly used to carry out chemical en-
gineering calculations in both academia and industry for a
number of years  There is, naturally, a great deal of reluc-
tance to recode FORTRAN programs into the VBA language
just so the calculations can be integrated into the spread-
sheet.

There are additional reason to utilize a FORTRAN program.
The program may be very long and complex. It may be very
much more efficient than the comparable VBA program in
terms of execution time. Transferring data to the FORTRAN
program from the spreadsheet, doing the FORTRAN based
calculations and transferring results back to the spreadsheet
may therefore be a very attractive procedure.

The Shell Function

The shell function will start another application from within
a VBA procedure.  Once the application is started, the next
command in the VBA procedure is executed. There is no
delay to allow the application to run to completion.  If the
application takes a relatively long time a delay must be added
in the VBA procedure so that the application can be com-
pleted and any result can be available to be transferred back
to the spreadsheet.

Use of the Shell Function

Figure 1 is a listing of a FORTRAN program that reads in
three numbers from an input file (Tsin1), performs some
simple arithmetic calculations and then writes the results
(five numbers) to an output file (Tsout). The exec module,
TESTX.EXE is located in the directory C:\TMP

Figure 2 is a spreadsheet that has three numbers in A3, A4.
and A5. It is desired to transmit these numbers to the FOR-
TRAN program of Figure 1 and return the results back into
the spreadsheet in locations D3 to D7.

Figure 3 gives a listing of the subroutine procedures that are
written in VBA to accomplish these tasks. The procedures
are invoked by clicking the CallFile macro in the  window
resulting from  clicking Tools → Macro.

The subroutine procedure then proceeds to:

1. Clear the contents of D3:D7 on the spreadsheet (proce-
dure moda).

2. Calls subroutine WriteDataToTsin1 to create the input
file Tsin1.

3. Invokes the execution of TESTX.

4. Causes a delay of 1 sec so that TESTX can complete its
calculations.

5. Calls  subroutine ReadBackFromTsout to place the re-
sults of the calculation in spreadsheet locations D1…D7.

To the user of the macro, the calculation appears as if it took
place entirely in the spreadsheet.

Conclusion

Use of Excel 95 and VBA allows for the possible integration
of  FORTRAN written programs into spreadsheet calcula-
tions. At most, some modifications of these FORTRAN pro-
grams may be needed to allow for file input and output.

References
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Executing FORTRAN Programs From Excel:
Use of the Shell Function
Edward M. Rosen, EMR Technology Group
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C PROGRAM TO READ A FILE, DO CALCULATIONS AND OUTPUT  THE RESULTS
C

DIMENSION X(3), Y(5)
C

OPEN  (9,  FILE=’C:\TMP\TSIN1’)
OPEN  (8,  FILE=’C:\TMP\TSOUT’)

C
READ  (9,  *,  END = 100)  (X(I),  I=1,3)

C
C MISCELLANEOUS CALCULATIONS
C
100 Y(1)  =  X(1) /X(2)

Y(2)  =  X(1) *X(2)
Y(3)  =  X(1) +X(2) +X(3)
Y(4)  =  X(1) *X(2) *X(3)
Y(5)  =  X(1) **2  +  X(2) **2  + X(3) **2

C
WRITE  (8, 1000)  (Y(K),  K= 1,  5)

    1000 FORMAT  (4(F9.2,’,’1X),  F9.2)
C

STOP 777
END

Figure 1.  FORTRAN Program

Numbers to Tsin1 Results from TestX

6     0.86 1st/2nd
7   42.00 1st * 2nd
8   21.00 Sum of three

336.00 Product of Three
149.00 Sum Sqs of Three

Figure 2.  Spreadsheet Showing Input and Output
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Sub CallFile0
Reset

Call moda

FileIn = “C:\Tmp\Tsin1”
Call WriteDataToTsin1(FileIn)

RetVal = Shell(“C:\TMP\TESTX.exe”,1)

AddTimeSec = 1
newHour = Hour(Now())
newMinute = Minute(Now())
newSecond = Second(Now0) + AddTimeSec

WaitTime = TimeSerial(newHour, newMinute,
newSecond)

Application Wait  WaitTime

FileOut = “C:\Tmp\Tsout”
Call ReadBackFromTsout(FileOut)

End Sub
******************************************

Sub WriteDataToTsin1(FileIn)

Dim A3 As Single
Dim A4 As Single
Dim A5 As Single

A3 = Cells(3, 1)
A4 = Cells(4, 1)
A5 = Cells(5, 1)

Open FileIn For Output As #1
Write #1, A3, A4, A5

Close #1

End Sub
******************************************

Sub ReadBackFromTsout(FileOut)

Open FileOut For Input As #1

Do Until EOF(1)
Input #1, D1, D2, D3, D4, D5

Loop

Close #1

Cells(3, 4) = D1
Cells(4, 4) = D2
Cells(5, 4) = D3
Cells(6, 4) = D4
Cells(7, 4) = D5

End Sub
*********************************************

Sub moda0
   Sheets(“Sheet1”).Select
   Range(“D3:D7”).Select
   Selection.ClearContents
End Sub
*********************************************

Figure 3.  Listing of Macro Sheet
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Engineering Computing with Maple
Ross Taylor, Clarkson University

Introduction

The future of general purpose scientific and engineering
computing belongs to software systems that provide excep-
tional integration (pun intended) of several key functions:
symbolic mathematics, graphics, numerical computations,
document creation, and an ability to link to other software
tools (e.g. spreadsheets, programming languages, numeri-
cal libraries, databanks, etc.). While we do not yet have tools
that perform all of these tasks with the required level of ex-
cellence, the class of software that at present comes closest
to this ideal are computer algebra systems (CASs). There
are several computer algebra systems in use today: Macsyma,
Reduce, Derive, Mathematica, Maple and Scratchpad are
some of the better known ones. Many modern CASs inte-
grate (if we may be permitted to use the word) symbolic
mathematical capabilities (integration and differentiation, for
example) with numerical capabilities (e.g. integration of
ODE systems and linear and nonlinear equation solving) and
sophisticated graphics (including 3-dimensional plots of
(parametric) surfaces, spacecurves, and much more). Other
tools are useful for the numerical and graphical calculations
but only a CAS can help us with the symbolic computation.

For the past few years the author has made extensive use of
Maple to tackle a wide variety of problems in chemical en-
gineering (primarily thermodynamics) [1-9], numerical com-
puting [10,11] and cartography [12].  This article provides
an overview of some of our work with Maple (for complete
details readers should consult the references).

Thermodynamics with Maple

Thermodynamics deals with relationships between eight state
variables normally assigned the letters P, v, T, U, H, S, A,
and G (these letters stand for Pressure, Volume, Tempera-
ture, Internal Energy, Enthalpy, Entropy, Helmholtz Energy,
and Gibbs Energy respectively). In order to be useful in the
exploration of thermodynamics, a computer algebra system
needs:
1. The ability to differentiate undefined functions of sev-

eral variables including undefined functions of an un-
defined number of variables.

2. To be able to work with the subscripted (indexed) par-
tial derivatives of thermodynamic functions found in
many thermodynamic formulae.

3. The ability to differentiate arbitrary sums (a summa-
tion where the upper limit is a symbol rather than a num-
ber) with respect to an indexed variable.

4. The ability to display the specialized graphical images
required in thermodynamics.

To the best of our knowledge none of the major commercial
computer algebra systems can do all (or, in some cases, any)
of the above right out of the box. However, most CASs can
be taught new tricks and we have done this in a package for
Maple called TDtools that can "do" all of the above, as illus-
trated below.

Derivatives of Undefined Functions

Consider an arbitrary thermodynamic property,  X, and as-
sume it to be a function of two other variables, Y and Z say.

> xdef:=X=X(Y,Z) :  xdef;

In order to explore the world of thermodynamic property re-
lations we need to be able to obtain differentials of unde-
fined functions like this one.  Maple's built in differential
operator, D, is unable to perform this operation. We have,
therefore, created a new operator called TD that is able to
take the total differential of such functions as shown below.
In all other respects, TD is supposed to behave like D.

> alias(d=D):
> t0:=TD(xdef): t0;

Partial Derivatives in Thermodynamics

Note the indexed partial derivatives in the above expression.
Such derivatives are important in thermodynamics and are
returned by the TDiff procedure.

> TDiff(X,Y);

If TDiff is called with more than two arguments, the addi-
tional arguments are assumed to be constant variables and
become (or are added to) the index.

X X Y Z= ( , )

d X
Y

X d Y
Z

X d Z
Z Y

( ) ( ) ( )= 





+ 





∂
∂

∂
∂

∂
∂Y

X
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> TDiff(X,Y,Z);

Second (and higher) derivatives can be obtained by repeated
application of TDiff.

The functions TD and TDiff (as well as a few others) allow
us easily to derive many other relations between partial de-
rivatives: the triple product rule,

the chain rule,

the insertion rule,

and the following expression (see [8] for details).

This seemingly complicated result is of immense utility for
deriving relationships between thermodynamic properties.
We may encapsulate Maple results in procedures for later
use.

>  DXYZ  := proc(X,Y,Z,K,L)
>  Diff(X,Y) [Z] = (Diff(X,L) [K] *
>  Diff(Z,K) [L] -  Diff(X,K)[L] *
>  Diff(Z,L)[K])  /
>  (Diff(Y,L)[K]  *  Diff(Z,K)[L]-
>  Diff(Y,K)[L]  *  Diff(Z,L)[K]);
> end:

Some of the partial derivatives in the above expression can
be either 0 or 1 and these simplifications are encoded into
`simplify/TDiff` to which we include a call inside the DXYZ
procedure shown below.
> DXYZ := proc (X,Y,Z)
> local expr, L, K;
>  expr:=Diff(X,Y)[Z] =
> (Diff(X,T)[P]
> Diff(Z,P)[T] - Diff(X,P)[T]  *
>Diff(Z,T )[P])  /

> (Diff(Y,T)[P] *
> Diff(Z,P)[T] -
> Diff(Y,P)[T] *
> Diff(Z,T)[P]);
> expr  := simplify(expr,TDiff);
> expr  := simplify(Right(
> simplify,expr,Thermo));
> end:

We have cut down the number of arguments to three since
the last two are T and P. We have also added a call to `sim-
plify/Thermo` that knows the Maxwell relations, the defini-
tion of heat capacity and a few other thermodynamic prop-
erty relations. The code is not shown here since it is lengthy;
however, we should note that all of the simplifications con-
tained within that procedure can be derived using Maple.
We can use this procedure to express any thermodynamic
partial derivative in terms of measurable properties (PvT data,
heat capacities) and entropy. Some examples follow.
> DXYZ(G,A,U);
>

> DXYZ(S,v,A);

All of the more than 300 different partial derivatives can
now be presented error-free and completely automatically
in just a few seconds. Alternative forms (perhaps involving
compressibility) can be obtained by adding to the set of re-
lations known to `simplify/Thermo`.

Differentiation of Arbitrary Sums

The NRTL model for the (dimensionless) Gibb's free energy
of a mixture is:
> Qdef:=Q=sum(x[i] * (sum(x[j] *
> tau[j,i]*G[j,i],j=1..c) /sum(x[j] *
> G[j,i],j=1..c)),i=1..c): Qdef;

This expression is the starting point for working out expres-
sions for the activity coefficients of each species in the mix-
ture defined by:
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> ln(gamma[i])=Diff(n[t]*Q,n[i]);

1n
n

n Qi
i

t( )γ ∂
∂

=

The differentiation required by the two prior expressions
involves differentiation of an undefined or arbitrary sum,
where the upper limit is a symbol that represents some pres-
ently unknown number of species. Maple's own differentia-
tion functions do not know how to differentiate such objects
with respect to one of the indexed variables; TDiff does.

The next step in the derivation is to replace the mole frac-
tions by their mole number ratios (and to multiply the result
by the total number of moles):

> Q1:=n[t]*subs(seq(x[v]=n[v]/n[t],
      v=[i,j,k,l,m,n]),Qdef):
> Q2:=expand(%): Q2;

and invoke TDiff to obtain the derivative of Q with respect
to the number of moles of the i-th species (the parameters
are assumed constant).

> t1:=ln(gamma[i])=
    TDiff(rhs(Q2),n[i],[tau,G]):

The result of the above operation is quite correct but is not
shown for reasons of space.  In what follows we use Maple
to present the result in a somewhat more familiar form using
mole fractions rather than mole numbers.

>  subs(seq(n[v]=x[v]*n[t],
> v=[i,j,k,l,m,n]),t1):
> expand(expand(%));

All this can, of course, be automated and the same com-
mands can be used for any activity coefficient model [6].
Similar procedures may also be developed for deriving ex-
pressions for fugacity coefficients in multicomponent mix-
tures [6,7].

Maple Graphics

Maple possesses an extensive set functions for creating a
wide variety of graphical effects (the plots and plottools pack-

ages). There remain several plot types that are of interest in
thermodynamics but which cannot be displayed by standard
Maple (curves, surfaces, and vector fields in triangular or
tetrahedral coordinates, for example). Fortunately, it is rea-
sonably simple to create new plot types in Maple. In the
accompanying figures we show some of the thermodynamic
images we have created - often surprisingly easily - with
Maple.  Limitations of space prevent us from showing in
detail exactly how these plots are created, interested readers
should consult the cited references and our web site. This
author has found the Programming Guide that is supplied
with Maple and the book by Klimek and Klimek [13] to be
particularly helpful in explaining how to dismantle and re-
assemble Maple plots.

The fundamental relationships between state variables were
explored in three famous papers by J.W. Gibbs [14]. In the
second of these papers Gibbs explores the geometry of the
U(S,v) surface. It is interesting to note that there are very
few illustrations in Gibbs' papers; it seems that Gibbs could
"see" the relationships between state variables. There should
be little doubt that visualization of thermodynamic relations
can aid an understanding of what for many is a difficult sub-
ject. Not all of us are able to see thermodynamics in our
heads as easily as did Gibbs, but few texts contain graphical
visualizations of any of what we refer to here as Gibbs sur-
faces. An exception is the advanced text of Tester and Modell
[15] which contains a few images created using computer
software developed by Jolls and Coy [16-19]. Their 12,000
line Fortran program, initially created to run on a few spe-
cific platforms and later ported to others, provides some
wonderful graphic images of fundamental thermodynamic
functions.

Figures 1 to 3 show Gibbs’ surfaces created using Maple.
Given the parametric equations (in terms of temperature and
volume) Maple can create these surfaces with a one-line
command. The black and red lines are the binodal and
spinodal curves, respectively. These lines require some ad-
ditional computational work. Several other examples and
complete details of how to construct these figures are given
by Baur et al. [9]. It is very instructive to view these surfaces
from different vantage points, a task that is made consider-
ably easier in the latest version of Maple which can rotate
three dimensional images in real time.
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Figure 2.  Internal energy surface as a function of
(dimensionless) entropy and volume

Figure 3.  Gibbs energy as a function of
temperature and pressure

Figure 4.  Residue curves for acetone, methanol, and
chloroform
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Figure 1.  Helmholtz energy surface as a function of
(dimensionless) temperature and volume

Additional examples, including some frames from an ani-
mation showing the tangent plane sliding over the U(S,v)
surface are given by Baur et al. (1998).

Figures 4 and 5 show residue curves and a vector field dia-
gram for a mixture of acetone, methanol, and chloroform.
These figures require extensive numerical computation prior
to their construction; details are available in [8]. Maple can
create vector field  plots out of the box, but not for the trian-
gular field needed here. Creating  ones own field plots is
very simple given the tools available in Maple.



The location of the binary and ternary azeotropes is
clearly visible in Figures 4 and 5. The computation of
all azeotropes in a multicomponent mixture has been
the subject of a number of recent papers and sophisti-
cated algorithms for this purpose have been published
(e.g. [20]). We have found it possible to compute all
azeotropes using nothing more than a constrained
Newton’s method (at least, we find all the azeotropes
listed in [20], the difference is that we cannot prove
that we have them all). The result of our computations
(see [8] for the code) is a Maple table, an example for
this system  is:

Note that our code has determined the composition and
temperature of the azeotropes as well as whether it is a
stable node (SN), unstable node (UN) or saddle point
(S). We can pass this table to another procedure that
works out the distillation boundaries and draws an ap-
proximate distillation boundary map as shown below.
The procedure DBM plot is an implementation in Maple
of the algorithm of Foucher et al. [21] with the excep-
tion that we have the advantage of knowing the stabil-
ity of the azeotropic points.

> DBMplot(Azeotable3);

Figure 6.  Approximate distillation boundary map for
acetone, methanol, chloroform

Numerical Computing

The emphasis on symbolic manipulation in any definition of com-
puter algebra should not be taken to imply that a CAS is unsuit-
able for the predominantly numerical calculations that are such
an important part of modern engineering computing. It is true
that numerical computing is not Maple's strongest suit, but the
program does possess a number of functions designed specifi-
cally for such activities. The built in numerical equation solver,
fsolve, is an excellent tool for solving single nonlinear equations;
sadly it is much less successful on problems involving systems of
nonlinear equations. In view of this weakness we have developed
a fairly sophisticated implementation of Newton's method for
Maple that allows the user considerable control over the compu-
tations. Early versions of Newton were supplied with Maple in
the share library of user supplied functions. The latest and con-
siderably improved version is available from the authors web site.
We have also implemented homotopy continuation methods in
Maple, but that code has not yet been released as part of the New-
ton package (although we do intend to do so in the near future).

Many engineering problems require the numerical solution of dif-
ferential equations, some require the solution of mixed systems
of differential and algebraic equations (DAEs). Maple comes with
a number of built in numerical intergration methods including
Runge-Kutta, Gear's method and the LSODE algorithms. It is not,
however, capable of solving DAEs. To deal with this shortcom-
ing we have developed BESIRK [10], an implementation in Maple
of Michelsen's 3rd order SIRK method combined with a Bulirsch-
Stoer extrapolation technique. The BESIRK code can handle stiff

Figure 5.  Vector field diagram for acetone,
methanol, and chloroform

Azeotable3

Acetone     Chloroform    Methanol      T     Type
     1                    0                   0         56.07      S
     0                    1                   0         61.79      S
     0                    0                   1         64.54     SN
 .3437             .6563                0         65.47     SN
     0                .6482           .3518       53.91     UN
 .7944                 0              .2056       55.34     UN
 .3234             .2236           .4530       57.58       S
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systems of ODEs significantly faster than Maple's own inte-
gration routines and was used in the computation of the resi-
due curves shown in Figure 4. We have also found the
BESIRK code to be of considerable value in solving PDEs
by the Method of Lines[11].

Numerical problem solving using interval methods has been
used to solve a number of chemical engineering problems
that often are considered "difficult" [22]. Even out of the
box, Maple is capable of some elementary interval compu-
tations. A more complete package for interval computing
with Maple has been developed by Rob Corless and Amanda
Connell of the University of Western Ontario and supplied
with Maple as part of its share library. George Corliss from
Marquette University and his students developed an inter-
val Newton method that uses the Corless/Connell package.
However, their code does not work in the more recent re-
leases of Maple (3, 4 and 5). We have modified the Corliss
code for Release 4; the code is available on our web site.

Those of us that still prefer to program in more traditional
languages may like to know that Maple can also be used to
turn expressions and procedures into Fortran or C code.
Maple has its own built in functions for this purpose and
there is a package called Transfor developed by Claude
Gomez that can be used for this purpose. Gomez is also a
developer of Scilab, a (free) scientific software package for
numerical computing in a user friendly environment. Scilab
(with which this author has no personal experience) has links
to high powered numerical algorithms (e.g. DASSL) and can
carry out symbolic computing via a link to Maple.

More Maple

Readers wishing to experiment for themselves with Maple
may find sample worksheets to be of some value. Complete
worksheets for all of the above (and many more) exmaples
are available on the authors web site. Worksheets by the au-
thor that demonstrate the use of Maple for solving simple
material balance problems are supplied with Maple as part
of the share library (in /share/engineer/chemeng). The au-
thor has also contributed 10 Maple worksheets to the CD
that accompanies a new book by Cutlip and Schacham [23]
(and many more are under development).

Perhaps the single most useful additional capability of Re-
lease 4 of Maple V (the current version is Release 5) was its
ability to read binary random access files of arbitrary for-
mat. Maple's new found abilities at handling binary data were,
however, flawed since, other than conversion to and from
text strings, Release 4 did not come with utilities to convert
binary data into the integers and floating point numbers that
could be used in other computations. Following a request by
this author posted on the internet, electrical engineer Joe Riel
provided the functions needed to make it very easy to ma-
nipulate binary data within Maple. We have, for example,

used his package to develop code for reading the databank
that comes with ChemSep, thus providing Maple with ac-
cess to physical property data for use in many engineering
computations. Riel has also written a units conversion pack-
age that this author uses in a great many worksheets.  Riel's
packages (ieee and mks) are available on the web site of
Alex Walz.  Walz is also the author of some of the best math-
ematical and utility packages that significantly enhance the
ease of use of Maple.
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The method of lines is a general technique for solving par-
tial differential equations (PDEs) by typically using finite
difference relationships for the spatial derivatives and ordi-
nary differential equations for the time derivative.  William
E. Schiesser at Lehigh University has been a major propo-
nent of the numerical method of lines, NMOL.1   This solu-
tion approach can be very useful with undergraduates when
this technique is implemented in conjunction with a conve-
nient ODE solver package such as POLYMATH.2

A Problem in Unsteady-State Heat Transfer 3

This approach can be illustrated by considering a problem in
unsteady-state heat conduction in a one-dimensional  slab
with one face insulated and constant thermal conductivity as
discussed by Geankoplis.4

Unsteady-state heat transfer in a slab in the x direction is
described by the partial differential equation

where T is the temperature in K, t  is the time in s, and α is
the thermal diffusivity in m2/s  given by k/ρc

  
  In this treat-

ment, the thermal conductivity k in W/m·K, the density ρ in
kg/m3 and the heat capacity c

  
 in J/kg·K are all considered to

be constant.

Consider that a slab of material with a thickness 1.00 m is
supported on a nonconducting insulation. This slab is shown
in Figure 1. For a numerical problem solution, the slab is
divided into N sections with N + 1 node points. The slab is
initially at a uniform temperature of 100 °C. This gives the
initial condition that all the internal node temperatures are
known at time t = 0.

Tn = 100 for n = 2 … (N + 1) at t = 0  (2)

The Numerical Method of Lines for Partial
Differential Equations

Michael B. Cutlip, University of Connecticut and
Mordechai Shacham, Ben Gurion University of the Negev

Figure 1.   Unsteady-State Heat Conduction in a One-dimensional Slab
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1  Schiesser.  W.E.  The Numerical Method of Lines.  San Diego, CA:  Academic Press. 1991.
2  POLYMATH is a numerical analysis package for IBM-compatible personal computers that is available through the CACHE
   Corporation. Information can be found at www.polymath-software.com.
3  This problem is adapted in part from Cutlip, M.B., and M. Shacham, Problem Solving in Chemical Engineering with Numerical
    Methods.  Englewood Cliffs, NJ:  Prentice Hall, 1999.
4  Geankopolis. C.J. Transport Processes and Unit Operations.  3rd ed. Englewood Cliffs.  NJ:  Prentice Hall, 1993.
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If at time zero the exposed surface is suddenly held constant
at a temperature of 0 °C, this gives the boundary condition
at node 1:

T1 0= ≥  t for 0

The other boundary condition is that the insulated boundary
at node N + 1 allows no heat conduction. Thus

∂
∂

T

x
N + = ≥1 0  t for 0    (4)

Note that this problem is  equivalent to having a slab of twice
the thickness exposed to the initial temperature on both faces.

Problem (a) - Numerically solve Equation (1) with the
initial and boundary conditions of (2), (3), and (4) for the
case where  ααααα = 2 x 10-5m2/s  and the slab surface is held
constant at T1 = 0 °C. This solution should utilize the nu-
merical method of lines with N = 10 sections. Plot the
temperatures T2, T3, T4, and T5 as functions of time to
6000 s.

For this problem with N = 10 sections of length ∆x = 0 1.  m ,
Equation (1) can be rewritten using a central difference for-
mula for the second derivative as

   (5)

The boundary condition represented by Equation (4) can be
written using a second-order backward finite difference as

   (6)

Figure 2.  Temperature Profiles for Unsteady-state Heat Conduction in a One-dimensional Slab

that can be solved for T
11
 to yield

 (7)

The problem then requires the solution of Equations (3), (5),
and (7) which results in nine simultaneous ordinary differ-
ential equations and two explicit algebraic equation for the
11 temperatures at the various nodes. This set of equations
can be entered into the POLYMATH Simultaneous Differ-
ential Equation Solver or some other ODE solver. The re-
sulting equation set for POLYMATH is

Equations:
d(T2)/d(t)=alpha/deltax^2*(T3-2*T2+T1)
d(T3)/d(t)=alpha/deltax^2*(T4-2*T3+T2)
d(T4)/d(t)=alpha/deltax^2*(T5-2*T4+T3)
d(T5)/d(t)=alpha/deltax^2*(T6-2*T5+T4)
d(T6)/d(t)=alpha/deltax^2*(T7-2*T6+T5)
d(T7)/d(t)=alpha/deltax^2*(T8-2*T7+T6)
d(T8)/d(t)=alpha/deltax^2*(T9-2*T8+T7)
d(T9)/d(t)=alpha/deltax^2*(T10-2*T9+T8)
d(T10)/d(t)=alpha/deltax^2*(T11-2*T10+T9)
alpha=2.e-5
T1=0
T11=(4*T10-T9)/3
deltax=.10

The initial condition for each of the T’s is 100 and the inde-
pendent variable t varies from 0 to 6000. The plots of the
temperatures in the first four sections, node points 2 … 5,
are shown in Figure 2. The transients in temperatures show
an approach to steady state. The numerical results are com-
pared to the hand calculations of a finite difference solution

(3)
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Problem (b) - Repeat Problem (a) with 20 sections and
compare results with part (a).

The validity of the numerical solution can be investigated
by doubling the number of sections for the NMOL solution.
This involves adding an additional 10 equations given by
the relationship in Equation (5), modifying Equation (7) to
calculate T21, and halving ∆x. The results for these changes
in the POLYMATH equation set are also summarized in Table
1 as are similar results for 30 sections. Here the numerical
solutions are similar to the previous solution in part (a) as
the temperature profiles are virtually unchanged as the num-
ber of section is increased.

Problem (c) - Repeat parts (a) and (b) for the case where
heat convection is present at the slab surface. The heat
transfer coefficient is h = 25.0 W/m 2 ·K, and the thermal
conductivity is k = 10.0 W/m·K.

When convection is considered as the only mode of heat
transfer to the surface of the slab, an energy balance can be
made at the interface that relates the energy input by con-
vection to the energy output by conduction. Thus at any time
for transport normal to the slab surface in the x direction

where h is the convective heat transfer coefficient in W/m
2
·K

and T0 is the ambient temperature.

The preceding energy balance at the slab surface can be used
to determine a relationship between the slab surface tem-
perature T1, the ambient temperature T0, and the tempera-
tures at internal node points. In this case, the second-order

by Geankoplis
4
 (pp. 471–3) at the time of 6000 s in Table 1.

These results indicate that there is general agreement regard-
ing the problem solution, but differences between the tem-

Table 1.   Results for Unsteady-state Heat Transfer in a One-dimensional Slab at t = 6000 s

peratures at corresponding nodes increase as the insulated
boundary of the slab is approached.

Distance
from Slab

Surface in m

Geankoplis4 Numerical Method of Lines
∆∆x = 0.2 m ∆∆x = 0.1 m ∆∆x = 0.05 m

n T n T n T

∆∆x = 0.0333 m

n T

0

0.2

0.4

0.6

0.8

1.0

1
2

3

4

5

6

 0.0
31.25

58.59

78.13

89.84

93.75

3

5

7

9

11

0.0
31.75

58.49

77.46

88.22

91.66

1
5

9

13

17

21

0.0

31.68

58.47

77.49

88.29

91.72

1

7

13

19

25

31

0.0

31.67

58.47

77.50

88.31

91.73

h T T k
T

x x
( )0 1

0
− = −

=

∂
∂

(8)

forward difference equation for the first derivative can be
applied at the surface

and can be substituted into Equation (8) to yield

The preceding equation can be solved for     to give

and the above equation can be used to calculate     during
the NMOL solution.

The resulting equation set for POLYMATH for ∆x = 0.10 m
for N = 10 is

Equations:
d(T2)/d(t)=alpha/deltax^2*(T3-2*T2+T1)
d(T3)/d(t)=alpha/deltax^2*(T4-2*T3+T2)
d(T4)/d(t)=alpha/deltax^2*(T5-2*T4+T3)
d(T5)/d(t)=alpha/deltax^2*(T6-2*T5+T4)
d(T6)/d(t)=alpha/deltax^2*(T7-2*T6+T5)
d(T7)/d(t)=alpha/deltax^2*(T8-2*T7+T6)
d(T8)/d(t)=alpha/deltax^2*(T9-2*T8+T7)
d(T9)/d(t)=alpha/deltax^2*(T10-2*T9+T8)
d(T10)/d(t)=alpha/deltax^2*(T11-2*T10+T9)
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There is reasonable agreement between the various NMOL
results as the number of sections (smaller ∆x) is increased.
The slower response of the temperatures within the slab due
to the additional convective resistance to heat transfer is evi-
dent when the temperatures are compared to those presented
in Table 1.  Selected temperatures are presented in Figure 3
for the same locations and at the same scale as Figure 2.  The
delays in the responses of the various temperatures are quite
evident.

Problem Extensions

There are a number of extensions to this problem that can be
solved with the Numerical Method of Lines.  The thermal

conductivity of the solid could vary with the local tempera-
ture.  There could be an initial temperature profile in the
solid. Radiative heat transfer to the surface could be consid-
ered in addition to the convection.  The convective heat trans-
fer coefficient could be a function of the ∆T between the
bulk gas and the slab surface.  All these possibilities and
more can be solved with the NMOL and an ODE solver such
as POLYMATH.  This type of problem can be used to effec-
tively introduce undergraduate students to transient heat
transfer and instruct them to the numerical solution of par-
tial differential equations – a subject area that is not nor-
mally considered in the typical curriculum.

alpha=2.e-5
deltax=.10
T11=(4*T10-T9)/3
h=25.
T0=0
k=10.
T1=(2*h*T0*deltax-k*T3+4*k*T2)/(3*k+2*h*deltax)

Table 2.  Results for Unsteady-state Heat Transfer with Convection in a One-dimensional Slab at t = 1500 s

The preceding equation set can be integrated to any time t
with POLYMATH or another ODE solver. The results at t =
1500 s are summarized in Table 2.

Numerical Method of LinesDistance
from Slab

Surface in m

Geankoplis4

∆∆x = 0.2 m ∆∆x = 0.1 m ∆∆x = 0.05 m ∆∆x = 0.0333 m

n T n n nT T T

0.2

0

0.4

0.6

0.8

1.0

1

2

3

4

5

6

1

3

5

7

9

11

64.07

89.07

98.44

100.00

100.00

100.00

64.40

88.13

97.38
99.61

99.96

100.00

1

5

9

13

17

21

64.99

88.77

97.73

99.72

99.98

100.00

1

7

13

19

25

31

65.10

88.90

97.80

99.74

99.98

100.00

Figure 3.  Temperature Profiles for Unsteady-state Heat Transfer with Convection in a One-dimensional Slab
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