Integrating Differential Equations Using Excel 7.0
Edward M. Rosen, EMR Technology Group

The need to solve sets of ordinary differential equations arises  The output of the function is the array DDD(1) to DDD(7).
in a number of chemical engineering applications (1). Tliteconsists of
ability to carry out these calculations within a spreadsheet
environment (2, 3, 4) has a number of advantages: 1. The new stepsize (can be the same value as the current
stepsize).
1. The spreadsheet is a well known and commonly us2d The new value of the independent variable.
environment for carrying out chemical engineering caB. The new values of the dependent variables.
culations.
The Rk4x function is implemented on the spreadsheet by
2. The input and output capabilities of the spreadsheet @amering
be utilized.
=Rk4x(h, X, y1, y2, y3, y4, y5, prm)
3. No additional programs or systems need to be learned.
where
What is required, however, is the use of Visual Basic for h = step size
Applications (VBA) which is supplied as an integral part of x = independent variable
Excel 7.0 (5). y1..y5 = dependent variables
prm = a parameter vector of any length
Ordinary Differential Equations- Initial Value
Problems A separate functionRhs) must be written by the user to
specify the right hand sides of the equations.
There are a number of algorithms that may be used to solve
ordinary differential equations with specified initial condiAn Example Problem
tions. For problems which are not stiff th& @rder Runge
Kutta method is very popular. A step size (h) must be spethree tanks (6) are set up so that the flow out of the top tank

fied. into tank 1 is a constant. The flow through a valve from
tank 1 into tank 2 depends on the height of the liquid and the
For Each Equation(j) flow from tank 2 through a valve also depends on the height

of the liquid in that tank. (see Figure 2).
Y., =y, T [1/6(k, + 2k, + 2k, +k,)]*h

i+

The following equations apply:

Where:
q,=C, [ h
Ky = XYY Yy Yis) Ty
kKhk k| * q2:C2 \/ h2
ky = £(x, + /2y, + 12%h*k, |y, + 1/2*h *k, ,,...) A*dhjdi=-C* htq.
k, =f(x,+ b2,y + 12*h*k, )y, + 1/2 *h*k, ,,...) A*dh/dt=C * J h-C* h

ky=f(x, T hy +h*k, .y, +hk,+..) If a volume of liquid equal to M is added to the second tank,

. . . ) & the problem is to show the response of the height vs time in
Figure 1 is a VBA implementation of th€ Order Runge o +vo tanks. Use M = 400 ém

Kutta algorithm for up to five simultaneous differential equa-

tions. Thearray function(2)Rk4x has the following inputs: Steady state measurements show:

1. The stepsize, h A = 48.65 cm?
2. The current value of the independent variable, x h =245cm
3. The current values of the dependent variables. h:= 16.6 cm
4. A parameter vector, prm. qin‘s =94.47
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By setting the derivatives equal to 0 (steady state) the values of Public Function Rk4x(h,x,y1, y2, y3, y4, y5, prm)
C, and C, may be determined. (C, =19.085, C, = 23.1867)
‘Written by EMRosen 10/30/97
Figure 3 is a listing of the functioRhs which defines the ‘Copyright © EMR Technology Group
right hand sides of the two differential equatidrissis called )
by Rkx. h = step size

‘x = independent variable

. . L .yl y2,y3,y4,y5=d dent variabl
Figure 4 is a listing of the spreadsheet. Row 15 contains the 7YY CPenCent vaTiables

labels for each of the first four columns. Row 16 specifi€§m a parameter vector of unspecified length
the integration step size, the total time elapsed and the initj@n(1) = Number of Equations Being Integrated
heights of the tanks. The following actions are then taken:
‘kij : i is the k value, j is the equation number of dependent
1. ColumnsA17 to D17 must first be selected (highlighte#jriable

with the mouse. The following is entered into the for- .
mula bar: ‘Output is the Seven Element Vector

‘Actual Output must be pre-selected
=Rk4x($A16,$B16,$C16,$D16,0,0,0,$B%4) Dim DDD(1 To 7)

2. Cntrl+Shift+Enter is then entered Dim fff(1 To 5)
The new values (at the new time) of the step size, time a¥ = prm(1)

dependent variables will then appear in row 17. Row 17
may be copied as many times as desired out to a final tii! = Rhs(x.yl.y2,y3.y4.y5,prm,fff)

Figure 5 is a plot of the results shown in the spreadsheeﬁ)lzfzggg
Figure 4. k13 = fff(3)

k14 = fff(4)
Summary k15 = ffi(5)

The integration of sets of differential equations may be pgl: - _ Rhs(x + 0.5 * hyyl +0.5%h*k11,y2 + 0.5%h*k12
formed rapidly and easily using Excel 7.0 and Visual BagiG+ h#k13,y4 + 0.5%h*k14,y5 + 0.5* h* k15,prm, ff)
for Applications. TheRk4x integration routine is part of

the EMR Technology Group Library and may be ordered1 = fff(1)

y3+

from the CACHE Corporation. k22 = fff(2)
k23 = fff(3)
References k24 = fff(4)
K25 = fff(5)
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‘Values of new h and new x

DDD(1)=h
DDD(2)=x +h

Main Inlet
‘First Independent Variable

- Qverflow pipe
" (to drain)

DDD3) =yl + (h/6) * (k11 +2 * k21 +2 * k31 + k41)
Tank with

‘Second Independent Variable constant head.

DDD(4) = y2 + (h/6) * (k12 + 2 * k22 + 2 * k32 + k42)

t Impuise input
‘Third Independent Variable - 4- -4 ;
DDD(5)=y3 + (h/6) * (k13 +2 * k23 + 2 * k33 + k43)

‘Fourth Independent variable

1M

Tank 1

DDD(6) = y4 + (h/ 6) * (k14 + 2 * k24 + 2 * k34 + kd4)

‘Fifth Independent variable
DDD(7)=y5 + (h/ 6) * (k15 + 2 * k25 +2* k35 + k45)

Rk4x = DDD

|

|

|

|

Tank 2 |

End Function n |
? l

K

Figure 1. Listing of Rk4x Function B

‘Tank Emptying Model — Chem Eng Education Vol 31 No 1
Winter 1997
‘Page 64

‘prm array Figure 2. Configuration of Two Tanks

¢ pm(l)=2

¢ prm(2) — A =48.65

¢ prm(3) — qins = 94.47
¢ prm(4) —hls=24.5

¢ prm(5) —h2s=16.6

¢ prm(6) — C1 = qins/Sqr(h1s)
¢ prm(7) — C2 = C1 * Sqr(h1s/h2s)

Public Function Rhs(x,y1,y2,y3,y4.,yS, prm, fff)

fff(1) = prm(3) / prm(2) —prm(6) * Sqr(y1) / prm(2)
fff(2) = prm(6) / prm(2) * Sqr(y1) — prm(7) / prm(2) * Sqr(y2)

fff(3) = 0
ff(4) = 0
fff(5) =0
Rhs=0

End Function

Figure 3. Listing of RHS Function
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Emptying Tanks — “A Simple Process Dynamics Experience” Chem Eng Education Vol 31 No. 1 Winter 1997

Parameters

No of Equations
A

qins

hls

h2s

Cl1

C2

M

Step Size

2

48.65

94.47

24.5

16.6
19.08582218
23.18674957
400

Time(Sec)

I i T i T T i T = T i Sl S S e S A N S T ol T T ST S S SN S S S N SN S

100
104
108
112
116
120
124
128
132
136
140
144
148
152
156
160

Figure 4. Spreadsheet

Tank 1 (cm)
32.72199383
31.59251323
30.61014698
29.75763201
29.01929699
28.38101284

27.8301214
27.35534762
26.94670087
26.59537025
26.29361793
26.03467378
25.81263394
25.62236487
25.45941422
25.31992901
25.20058137
25.09850182
25.01121971
24.93661045
24.87284903
24.81836923
24.77182801
24.73207449
24.69812306
24.66913004

24.6443736
24.62323635
24.60519042
24.58978461
24.57663331
24.56540709
24.55582449
24.54764512

24.5406637

24.5347049
24.52961903
24.52527828
24.52157354
24.51841166
24.51571312

Tank 2 (cm)
16.6
17.60552549
18.27507339
18.69452998
18.92870841
19.02716033
19.0279769
18.96043795
18.84695034
18.70451896
18.54589244
18.38047084
18.21503234
18.05431734
17.9014983
17.75855627
17.62658102
17.50600839
17.39680619
17.29861832
17.21087492
17.13287547
17.06385032
17.00300536
16.94955348
16.90273607
16.86183687
16.82619015
16.79518478
16.76826528
16.74493091
16.72473333
16.7-727335
16.69219736
16.67919333
16.66798699
16.65833794
16.6500361
16.64289828
16.63676511
16.63149816

Row 15
Row 16
Row 17
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Tank Dynamics
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Figure 5. Graph of Tank Dynamics
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Educational Materials Available Through the
CACHE WWW Site

A Collection of ten numerical problems in chemical engineering solved by
various mathematical software packages

Michael B. Cutlip, University of Connecticut

Session 12 of the Chemical Engineering Summer Schoolletse materials can also be obtained from an FTP site at the
Snowhbird, Utah on August 13, 1997 was concerned withiiversity of Connecticut: ftp.engr.uconn.edu/pub/ASEE/
“The Use of Mathematical Software in Chemical Engineer-
ing.” This session provided a major overview of three m&ruce Finlayson is also planning to distribute a CD-ROM
jor mathematical software packages (MathCADgontaining these materials to Chemcial Engineering Depart-
Mathematica, and POLYMATH), and a set of ten problemmgents in the near future on behalf of the ASEE Summer
was distributed that utilizes the basic numerical methodsSehool. These CD-ROMs will also be available from CACHE
problems that are appropriate to a variety of chemical engi-a nominal price.
neering subject areas. The problems are titled according to
the chemical engineering principles that are used, and fkegecent article on this problem set has appeared in Com-
numerical methods required by the mathematical modelipgter Applications in Engineering Education, Vol. 6, No. 3,
effort are identified. This problem set is summarized in pp 169-180 (1998) from which this material is adapted.
Table 1.
Use of the Problem Set
After the ASEE Summer School, three more sets of solu-
tions were provided by authors who had considerable expgée complete problem writeups from the various packages
rience with additional mathematical software packages. Taéow potential users to examine the detailed treatment of a
current total is now six packages, and the packages (listediety of typical problems. This method of presentation
alphabetically) and authors are given below. should indicate the convenience and strengths/weaknesses of
each of the mathematical software packages. The problem
Excel - Edward M. Rosen, EMR Technology Group files can be executed with the corresponding software pack-
age to obtain a sense of the package operation. Parameters

Maple - Ross Taylor, Clarkson University can be changed, and the problems can be resolved. These ac-
tivities should be very helpful in the evaluation and selection

MathCAD - John J. Hwalek, University of Maine of appropriate software packages for personal or educational
use.

Mathematica - H. Eric Nuttall, University of New Mexico
Additionally attractive for chemical engineering faculty is that

MATLAB - Joseph Brule, John Widmann, Tae Han, aniddividual problems from the problem set can be easily inte-

Bruce Finlayson, University of Washington grated into existing coursework. Problem variations or even
open-ended problems can quickly be created. This problem

POLYMATH - Michael B. Cutlip, University of Connecti- set and the various writeups should be helpful to chemical

cut and Mordechai Shacham, Ben-Gurion University of tlemgineering faculty who are continually faced with the selec-

Negev tion of a mathematical problem solving package for use in
conjunction with their courses.

The complete problem set has now been solved with the

following mathematical software packages: Excel, Maple,

MathCAD. Mathematica. MATLAB. and Ponmath As %Ixcel is a trademark of Microsoft Corporation (http://www.microsoft.com)

. ! s L ) aple is a trademark of Waterloo Maple, Inc. (http://www.maplesoft.com)

s_erwce t_o the academlc community, the CACHE Corpor@éthCAD is a trademark of Mathsoft, Inc. (http://www.mathsoft.com)

tion provides this problem set as well as the individual pagkathematica is a trademark of Wolfram Research, Inc.

age writeups and problem solution files for downloadin@ttp://www.wolfram.com)

on the WWW at http://www.che.utexas.edu/cache/. TIYKTLAB is a trademark of The Math Works, Inc.

. . . :/lwww.mathworks.com

problem set gnd (_jeta|ls of the various solutions (about S9LYMATH is copyrighted by M. Shacham and M. B. Cutlip

pages) are given in separate documents as Adobe PDF fil@&:/iwww.polymath-software.com)

The problem solution files can be executed with the par-

ticular mathematical software package. Alternately, all of
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Table 1. Problem Set for Use with Mathematical Software Packages

MATHEMATICAL

SUBJECT AREA PROBLEM TITLE MODEL PROBLEM
Introduction to Ch.E. Molar Volume and Compressibility Single Nonlinear Equation
Factor from Van Der Waals 1
Equation
Introduction to Ch.E. Steady State Material Balances on Simultaneous Linear
a Separation Train* Equations 2
) Vapor Pressure Data Representay Polynomial Fitting, Linear
Mathematical Methods | 5 by polynomials and Equations and Nonlinear Regression 3
Thermodynamics Reaction Equilibrium for Multiple | Simultaneous Nonlinear 4
Gas Phase Reactions* Equations
Fluid Dynamics Terminal Velocity of Falling Single Nonlinear Equation 5
Particles
Heat Transfer Unsteady State Heat Exchange in &imultaneous ODE’s with 6
Series of Agitated Tanks* known initial conditions
Mass Transfer Diffusion with Chemical Reaction | Simulaneous ODE's with 7
in a One Dimensional Slab split boundary conditions
Separation Processes| Binary Batch Distillation** Simultaneous Differential
and Non-linear Algebraic 8
Equations
Reaction Engineering | Reversible, Exothermic, Gas Phasesimultaneous ODE's and 9
Reaction in a Catalytic Reactor” Algebraic Equations
Process Dynamics and| Dynamics of a Heated Tank with | Simultaneous Stiff ODE’s 10

Control

P1 Temperature Control**

aThese problems are taken in part from a new book entitled “Problem Solving in Chemical Engineering with Numerical Methods” by

Mordechai Shacham and Michael B. Cutlip. See the Announcement on page 22 of this newsletter.
* Problem originally suggested by H.S. Fogler of the University of Michigan
** Problem preparation assistance by N. Brauner of Tel-Aviv Univeristy
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Executing FORTRAN Programs From Excel:
Use of the Shell Function

Edward M. Rosen, EMR Technology Group

Excel 95 and its associated Visual Basic For Applicatiofigure 3 gives a listing of the subroutine procedures that are
(VBA) language provide a very substantial computationakritten in VBA to accomplish these tasks. The procedures
capability (1, 2). Nevertheless the ability to transfer out ofame invoked by clicking the CallFile macro in the window
VBA subroutine procedure, execute a module in the D@&sulting from clicking Tools_, Macro.
environment and transfer a result back to the spreadsheet
adds substantially to this capability. The shell function @he subroutine procedure then proceeds to:
VBA is a means of carrying this out (3).

1. Clear the contents of D3:D7 on the spreadsheet (proce-
FORTRAN Programs dure moda).

FORTRAN has been broadly used to carry out chemical éh- Calls subroutine WriteDataToTsinl to create the input
gineering calculations in both academia and industry for a file Tsinl.
number of years There is, naturally, a great deal of reluc-
tance to recode FORTRAN programs into the VBA language Invokes the execution of TESTX.
just so the calculations can be integrated into the spread-
sheet. 4. Causes adelay of 1 sec so that TESTX can complete its
calculations.

There are additional reason to utilize a FORTRAN program.
The program may be very long and complex. It may be véyy Calls subroutine ReadBackFromTsout to place the re-
much more efficient than the comparable VBA program in  sults of the calculation in spreadsheet locations D1...D7.
terms of execution time. Transferring data to the FORTRAN
program from the spreadsheet, doing the FORTRAN baskaithe user of the macro, the calculation appears as if it took
calculations and transferring results back to the spreadshsace entirely in the spreadsheet.
may therefore be a very attractive procedure.

Conclusion
The Shell Function

Use of Excel 95 and VBA allows for the possible inteigra
The shell function will start another application from withief FORTRAN written programs into spreadsheet calcula-
a VBA procedure. Once the application is started, the néixins. At most, some modifications of these FORTRAN pro-
command in the VBA procedure is executed. There is pmms may be needed to allow for file input and output.
delay to allow the application to run to completion. If the
application takes a relatively long time a delay must be addeeferences
in the VBA procedure so that the application can be com-
pleted and any result can be available to be transferred back Rosen, E. M., Visual Basic for Applications, Add-Ins
to the spreadsheet. and Excel 7.0, CACHE News, No. 45, Fall, 1997.

Use of the Shell Function 2. Rosen, E. M., The Case for Excel and Visual Basic for
Applications, CACHE News, No.46, Spring 1998.

Figure 1 is a listing of a FORTRAN program that reads in

three numbers from an input file (Tsinl), performs somde Harris, M., Teach Yourself Visual Basic for Applica-

simple arithmetic calculations and then writes the results  tions in 21 Days. Sams Publications, Indianapolis

(five numbers) to an output file (Tsout). The exec module, (1994).

TESTX.EXE is located in the directory C\TMP

Figure 2 is a spreadsheet that has three numbers in A3, A4.
and A5. It is desired to transmit these numbers to the FOR-
TRAN program of Figure 1 and return the results back into
the spreadsheet in locations D3 to D7.
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C PROGRAM TO READ A FILE, DO CALCULATIONS AND OUTPUT THE RESULTS

Figure 1. FORTRAN Program

C
DIMENSION X(3), Y(5)
C
OPEN (9, FILE="C\TMP\TSIN1")
OPEN (8, FILE="C\TMP\TSOUT")
C
READ (9, *, END =100) (X(I), 1=1,3)
C
C MISCELLANEOUS CALCULATIONS
C
100 Y(1) = X(1) IX(2)
Y(2) = X(1) *X(2)
Y(3) = X(1) +X(2) +X(3)
Y(4) = X(1) *X(2) *X(3)
Y(5) = X(1) **2 + X(2) **2 + X(3) **2
C
WRITE (8, 1000) (Y(K), K=1, 5)
1000 FORMAT (4(F9.2,,'1X), F9.2)
C
STOP 777
END
Numbers to Tsinl Results from TestX
6 0.86
7 42.00
8 21.00
336.00
149.00

1st/2nd

1st* 2nd

Sum of three
Product of Three
Sum Sgs of Three

Figure 2. Spreadsheet Showing Input and Output

CACHE News
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Sub CallFile0 Sub ReadBackFromTsout(FileOut)
Reset
Open FileOut For Input As #1

Call moda

Do Until EOF(1)
Fileln = “C:\Tmp\Tsinl1” Input #1, D1, D2, D3, D4, D5
Call WriteDataToTsin1(Fileln) Loop
RetVal = Shell“CATMP\TESTX.exe",1) Close #1
AddTimeSec =1 Cells(3,4)=D1
newHour = Hour(Now()) Cells(4, 4) = D2
newMinute = Minute(Now()) Cells(5, 4) = D3
newSecond = Second(NowO) + AddTimeSec Cells(6, 4) = D4

Cells(7, 4) = D5
WaitTime = TimeSerial(newHour, newMinute,
newSecond) End Sub
Application Wait WaitTime

Sub moda0
FileOut = “C:\Tmp\Tsout” Sheets(“Sheetl”).Select
Call ReadBackFromTsout(FileOut) Range(“D3:D7").Select

Selection.ClearContents

End Sub End Sub

*% *% *kkkkk *% *kkkkk *%* *% *% *% *kkkkk *% *kkkkk *% *kkkkk

Sub WriteDataToTsin1(Fileln)

Figure 3. Listing of Macro Sheet
Dim A3 As Single
Dim A4 As Single
Dim A5 As Single

A3 = Cells(3, 1)
A4 = Cells(4, 1)
A5 = Cells(5, 1)

Open Fileln For Output As #1
Write #1, A3, A4, A5

Close #1

End Sub

*% *% *kkkkk *% *kkkkk *% *%
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Engineering Computing with Maple

Ross Taylor, Clarkson University

Introduction 4. The ability to display the specialized graphical images
required in thermodynamics.

The future of general purpose scientific and engineering

computing belongs to software systems that provide excep-the best of our knowledge none of the major commercial

tional integration (pun intended) of several key functiongomputer algebra systems can do all (or, in some cases, any)

symbolic mathematics, graphics, numerical computations,the above right out of the box. However, most CASs can

document Creation, and an abl'lty to link to other softwa[-% taught new tricks and we have done this in a package for

tools (e.g. spreadsheets, programming languages, numgiple called TDtools that can "do" all of the above, as illus-
cal libraries, databanks, etc.). While we do not yet have toglsted below.

that perform all of these tasks with the required level of ex-

cellence, the class of software that at present comes clogrstvatives of Undefined Eunctions

to this ideal are computer algebra systems (CASs). There

are several computer algebra systems in use tbti&ysyma  Consider an arbitrary thermodynamic propers, and as-

Reduce Derive, Mathematica Maple and Scratchpadare  sume it to be a function of two other variabsndZ say.
some of the better known ones. Many modern CASs inte-

grate (if we may be permitted to use the word) symbolicxdef:=X=X(Y,Z) : xdef;

mathematical capabilities (integration and differentiation, for

example) with numerical capabilities (e.g. integration of X=X(Y,2)

ODE systems and linear and nonlinear equation solving) and

sophisticated graphics (including 3-dimensional plots @ order to explore the world of thermodynamic property re-

(parametric) surfaces, spacecurves, and much more). Othfibns we need to be able to obtain differentials of unde-

tools are useful for the numerical and graphical calculatiofyged functions like this one. Maple's built in differential

but only a CAS can help us with the symbolic computatiogperator, D, is unable to perform this operation. We have,
therefore, created a new operator called TD that is able to

For the past few years the author has made extensive usgi@é the total differential of such functions as shown below.

Mapleto tackle a wide variety of problems in chemical enn all other respects, TD is supposed to behave like D.
gineering (primarily thermodynamics) [1-9], numerical com-

puting [10,11] and cartography [12]. This article provides alias(d=D):
an overview of some of our work wiaple (for complete > t0:=TD(xdef): tO;
details readers should consult the references).

i 17}
Thermodynamics with Maple d(X) = % X@Zd(Y) + % X%d(Z)

Thermodynamics deals with relationships between eight state

variables normally assigned the lett&sv, T, U, H, S, A, partial Derivatives in Thermodynamics

andG (these letters stand for Pressure, Volume, Tempera-

ture, Internal Energy, Enthalpy, Entropy, Helmholtz Energjote the indexed partial derivatives in the above expression.

and Gibbs Energy respectively). In order to be useful in tBgch derivatives are important in thermodynamics and are
exploration of thermodynamics, a computer algebra systegturned by the TDiff procedure.

needs:
1. The ability to differentiate undefined functions of sew TDIff(X,Y);
eral variables including undefined functions of an un- T ix

defined number of variables.
2. To be able to work with the subscripted (indexed) par-

tial derivatives of thermodynamic functions found it it is called with more than two arguments, the addi-

many th(_armodynamlc formulac_e. tional arguments are assumed to be constant variables and
3. The ability to differentiate arbitrary sums (a SUMM&acome (or are added to) the index

tion where the upper limit is a symbol rather than a num-
ber) with respect to an indexed variable.

CACHE News Page 11



> (Diff(Y, T)[P] *
> Diff(Z,P)[T] -
> Diff(Y,P)[T] *

%%xa > Dif(Z [P

> expr = simplify(expr, TDiff);

> TDIff(X,Y,2);

Second (and higher) derivatives can be obtained by repeaie%f(pr I':: simp!li_fryl/(Right(.
application of TDiff. > 2':? ify,expr, Thermo));

us easily to derive many other relations between partial g |gi\{?\;(;];?§v¥r;::jepnl¢r\?eb§;\?; erggr;gg;z t;) égjleteos\g:;e
rivatives: the triple product rule, )

plify/Thermo™ that knows the Maxwell relations, the defini-
0 0 p) tion of heat capacity and a few other thermodynamic prop-
@de Xﬁz %Yﬁ( Qd? Za/ =-1 erty relations. The code is not shown here since it is lengthy;
however, we should note that all of the simplifications con-

tained within that procedure can be derived using Maple.
We can use this procedure to express any thermodynamic

0 0 0 _ partial derivative in terms of measurable properfied ¢lata,
% X& QTZY& % Z& =1 heat capacities) and entropy. Some examples follow.
> DXYZ(G,AU);
. . >
the insertion rule, @dze S@%V& . SPQ%V@T -\C, +VP§;TV§P
7 7 7} 7, 7} QJ =
O o d o] B A Y e e B Bl o
and the following expression (see [8] for details).
i
QJT(XQZ =52 3 3 3 P%VECP+P§%V&2T+ST§%V&
R R R Ak B2 -
A g

ll of the more than 300 different partial derivatives can
now be presented error-free and completely automatically

The functions TD and TDiff (as well as a few others) alloy%(

the chain rule,

> DXYZ(S,v,A);

This seemingly complicated result is of immense utility for
deriving relationships between thermodynamic propertie
We may encapsulate Maple results in procedures for la

use. in just a few seconds. Alternative forms (perhaps involving
> DXYZ := proc(X,Y.Z,K,L) compressibility) can be obtained by adding to the set of re-
> DIff(X,Y) [2] = (Diff(X,L) [K] * lations known to “simplify/Thermo".

> Diff(z,K) [L] - Diff(X,K)[L] * . . :

> DIffZ.L)[K]) / Differentiation of Arbitrary Sums

\Y

(Diff(Y,L)[K] * Diff(Z,K)[L]-
> Diff(Y,K)[L] * Diff(Z,L)[K]);
> end:

The NRTL model for the (dimensionless) Gibb's free energy
of a mixture is:

> Qdef:=Q=sum(x[i] * (sum(x[j] *

Some of the partial derivatives in the above expression Q@ al.J[.]".]iGU"]'J.__l"C) {Su?(;f[l] i

be either 0 or 1 and these simplifications are encoded into [1]j=1..¢)).i=1..): Qdef,
“simplify/TDiff" to which we include a call inside the DXYZ Oc 0
procedure shown below. Xj HZ Xj Tj’iGj_iH
> DXYZ := proc (X,Y,2) Q= =1

> local expr, L, K; i
> expr:=Diff(X,Y)[Z] =

> (Diff(X,T)[P]

> Diff(z,P)[T] - Diff(X,P)[T] *
>Diff(z,T)[P]) /

Mo

C
2 XiGj;
j=1

This expression is the starting point for working out expres-
sions for the activity coefficients of each species in the mix-
ture defined by:
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> In(gammal[i])=Diff(n[t]*Q,n[i]); ages). There remain several plot types that are of interest in
thermodynamics but which cannot be displayed by standard
p) Maple (curves, surfaces, and vector fields in triangular or
In(y;) = %ntQ tetrahedral coordinates, for example). Fortunately, it is rea-
i sonably simple to create new plot types in Maple. In the
The differentiation required by the two prior expressiongccompanying figures we show some of the thermodynamic
involves differentiation of an undefined or arbitrary Summages we have created - often Surprising'y eas”y - with
where the upper limit is a symbol that represents some prgfaple. Limitations of space prevent us from showing in
ently unknown number of species. Maple's own differentigtetail exactly how these plots are created, interested readers
tion functions do not know how to differentiate such objecthould consult the cited references and our web site. This
with reSpeCt to one of the indexed Variables; TDiff does. author has found the Programming Guide that is Supp"ed
with Maple and the book by Klimek and Klimek [13] to be
The next step in the derivation is to replace the mole fragarticularly helpful in explaining how to dismantle and re-
tions by their mole number ratios (and to multiply the resulissemble Maple plots.
by the total number of moles):
The fundamental relationships between state variables were

> QL:=n[t]*subs(seq(x[v]=n[v}/n(t], explored in three famous papers by J.W. Gibbs [14]. In the
v=[i,j,k,l,m,n]),Qdef): second of these papers Gibbs explores the geometry of the
> Q2:=expand(%): Q2; U(S,) surface. It is interesting to note that there are very

0 few illustrations in Gibbs' papers; it seems that Gibbs could
n Z nt "see" the relationships between state variables. There should

IH i1, IE be little doubt that visualization of thermodynamic relations

nQ= El can aid an understanding of what for many is a difficult sub-

.Zan'Giyi ject. Not all of us are able to see thermodynamics in our
1= heads as easily as did Gibbs, but few texts contain graphical

and invoke TDiff to obtain the derivative Qwith respect yjsualizations of any of what we refer to here as Gibbs sur-
to the number of moles of the i-th species (the parametgiges. An exception is the advanced text of Tester and Modell

are assumed constant). [15] which contains a few images created using computer
software developed by Jolls and Coy [16-19]. Their 12,000

> t1:=In(gammali])= line Fortran program, initially created to run on a few spe-
TDiff(rhs(Q2),n[i],[tau,G]): cific platforms and later ported to others, provides some

wonderful graphic images of fundamental thermodynamic
The result of the above operation is quite correct but is Fhctions.

shown for reasons of space. In what follows we use Maple
to present the result in a somewhat more familiar form usipgyures 1 to 3 show Gibbs’ surfaces created using Maple.

mole fractions rather than mole numbers. Given the parametric equations (in terms of temperature and
volume) Maple can create these surfaces with a one-line
> subs(seq(n[v]=x[v]*n[t], command. The black and red lines are the binodal and
> v=[ij,k,I,m,n]),t1): spinodal curves, respectively. These lines require some ad-
> expand(expand(%)); ditional computational work. Several other examples and

0 e o complete details of how to construct these figures are given

3 XTkiGx, D X1 G D 0, %G H} XkTk Gk | ED by Baur et al. [9]. Itis very instructive to view these surfaces

In(y;) =¥ L Zhig- Oy =1 U from different vantage points, a task that is made consider-

> XcGx % =1 ZXka % é DikaijZ % ably easier in the latest version of Maple which can rotate
k=1 H< 1H three dimensional images in real time.

All this can, of course, be automated and the same com-
mands can be used for any activity coefficient model [6].
Similar procedures may also be developed for deriving ex-
pressions for fugacity coefficients in multicomponent mix-
tures [6,7].

Maple Graphics

Maple possesses an extensive set functions for creating a
wide variety of graphical effects (the plots and plottools pack-
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Figure 1. Helmholtz energy surface as a function of
(dimensionless) temperature and volume

Figure 3. Gibbs energy as a function of
Additional examples, including some frames from an ani- temperature and pressure
mation showing the tangent plane sliding over the U(S,v)
surface are given by Baur et al. (1998).

Figures 4 and 5 show residue curves and a vector field dia-
gram for a mixture of acetone, methanol, and chloroform.

These figures require extensive numerical computation pri~~
to their construction; details are available in [8]. Maple ce .
create vector field plots out of the box, but not for the triai [N
gular field needed here. Creating ones own field plots :
very simple given the tools available in Maple.

f=]
@

0.6

0.7
URTIDY

“ 02 0.4 e 0 3

Figure 4. Residue curves for acetone, methanol, and
chloroform

Figure 2. Internal energy surface as a function of
(dimensionless) entropy and volume
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> DBMplot(Azeotable3);
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. . . Methanol Acvetone
Figure 5. Vector field diagram for acetone,
methanol, and chloroform

Figure 6. Approximate distillation boundary map for
acetone, methanol, chloroform

The location of the binary and ternary azeotropes is

clearly visible in Figures 4 and 5. The computation dfumerical Computing

all azeotropes in a multicomponent mixture has been

the subject of a number of recent papers and sophisthe emphasis on symbolic manipulation in any definition of com-
cated algorithms for this purpose have been publishedter algebra should not be taken to imply that a CAS is unsuit-
(e.g. [20]). We have found it possible to compute afible for the predominantly numerical calculations that are such
azeotropes using nothing more than a constrain@l important part of modern engineering computing. It is true
Newton’s method (at least, we find all the azeotropdBat numerical computing is not Maple's strongest suit, but the
listed in [20], the difference is that we cannot proverogram does possess a number of functions designed specifi-
that we have them all). The result of our computatiorg@lly for such activities. The built in numerical equation solver,

(see [8] for the code) is a Maple table, an example ft§olve, is an excellent tool for solving single nonlinear equations;
this system is: sadly it is much less successful on problems involving systems of

nonlinear equations. In view of this weakness we have developed
a fairly sophisticated implementation of Newton's method for

et Chlorof Methanol T T .
[Acetone orgrorm no ygeD Maple that allows the user considerable control over the compu-

o1 0 0 5607 0
B 8 (1) 8 gﬂi SSNE tations. Early versions of Newton were supplied with Maple in
Azeotable3 = [1.3437 6563 o 6547 snO  theshare library of user supplied functions. The latest and con-
B 0 6482 3518 5391 UNE siderably improved version is available from the authors web site.
nggﬁ ‘22%6 :iggg g?:gg USND We have also implemented homotopy continuation methods in

H  Maple, but that code has not yet been released as part of the New-
ton package (although we do intend to do so in the near future).

Note that our code has determined the composition and

temperature of the azeotropes as well as whether it i¥l@ny engineering problems require the numerical solution of dif-
stable node (SN), unstable node (UN) or saddle poit@rential equations, some require the solution of mixed systems
(S). We can pass this table to another procedure tiggifferential and algebraic equations (DAEs). Maple comes with
works out the distillation boundaries and draws an ap-number of built in numerical intergration methods including
proximate distillation boundary map as shown beloviRunge-Kutta, Gear's method and the LSODE algorithms. Itis not,
The procedure DBM plot is an implementation in Mapl&owever, capable of solving DAEs. To deal with this shortcom-
of the algorithm of Foucher et al. [21] with the exceping we have developed BESIRK [10], an implementation in Maple
tion that we have the advantage of knowing the stab@f Michelsen's 3rd order SIRK method combined with a Bulirsch-
ity of the azeotropic points. Stoer extrapolation technique. The BESIRK code can handle stiff
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systems of ODESs significantly faster than Maple's own int¢Sed his package to develop code for reading the databank
gration routines and was used in the computation of the rei&jat comes with ChemSep, thus providing Maple with ac-
due curves shown in Figure 4. We have also found tG€ss to physical property data for use in many engineering

BESIRK code to be of considerable value in solving pDEOMputations. Riel has also written a units conversion pack-
by the Method of Lines[11]. age that this author uses in a great many worksheets. Riel's

packages (ieee and mks) are available on the web site of

Numerical problem solving using interval methods has beé#ex Walz. Walz is also the author of some of the best math-
used to solve a number of chemical engineering proble@&atical and utility packages that significantly enhance the
that often are considered "difficult" [22]. Even out of th&ase of use of Maple.
box, Maple is capable of some elementary interval compu-
tations. A more complete package for interval computinjcknowledgements
with Maple has been developed by Rob Corless and Amanda
Connell of the University of Western Ontario and supplie§everal students, both graduate and undergraduate, contrib-
with Maple as part of its share library. George Corliss froiied to the development of the Maple codes used in this work.
Marquette University and his students developed an intd2ey are: Arnoud Higler, Richard Baur, Dorothy Scheckler,
val Newton method that uses the Corless/Connell packaga@mes Reese, and Warren Hoffmaster.
However, their code does not work in the more recent re-
leases of Maple (3, 4 and 5). We have modified the Corlig&ferences
code for Release 4; the code is available on our web site.

1. Taylor, R. and K. Atherley, Chemical Engineering with
Those of us that still prefer to program in more traditional Maple,Chem. Eng. Ed56-61, Winter 1995.
languages may like to know that Maple can also be usedo Taylor, R., Thermodynamics with Maple. | — Equations
turn expressions and procedures into Fortran or C code. Of State, Maple Tech, Issue 10, 50-59 (1993).
Maple has its own built in functions for this purpose and Taylor, R., Thermodynamics with Maple. Il — Phase
there is a package called Transfor developed by Claude Equilibria in Binary Systems, Maple Tect(1), 83-92
Gomez that can be used for this purpose. Gomez is also a (1994)
developer of Scilab, a (free) scientific software package fr Adams, S.and R. Taylor, Thermodynamics with Maple.
numerical computing in a user friendly environment. Scilab !l - Thermodynamic Property Relations and the Max-
(with which this author has no personal experience) has links Well equations, Maple Tecfi(2), 68-81, 1994.
to high powered numerical algorithms (e.g. DASSL) and c&n  Taylor, R., Thermodynamics with Maple. IV —The Prop-

carry out symbolic computing via a link to Maple. erties of Steam, Maple TecB(2), 61-68, 1996.
6. Taylor, R., Automatic Derivation of Thermodynamic
More Maple Property Functions using Computer AlgebFduid

Phase Equilibrial29, 37-47, 1997.

Readers wishing to experiment for themselves with Mapfe Taylor, R., Thermodynamics with Maple. | - Symbolic
may find sample worksheets to be of some value. Complete ComputationMathematics and Computation in Simu-
worksheets for all of the above (and many more) exmaples lation, 45, 101-119, 1998.

are available on the authors web site. Worksheets by the &u- Taylor, R., Thermodynamics with Maple. Il - Numeri-
thor that demonstrate the use of Maple for solving simple cal and Graphical Applicationslathematics and Com-
material balance problems are supplied with Maple as part Putation in Simulation45, 121-146, 1998.

of the share library (in /share/engineer/chemeng). The &i- Baur, R. J. Bailey, B. Brol, A. Tatusko, and R. Taylor,
thor has also contributed 10 Maple worksheets to the CD Maple and the Art of Thermodynami&Somputer Ap-

that accompanies a new book by Cutlip and Schacham [23] plications in Engineering Educatiom press 1998.
(and many more are under development). 10. Schwalbe, D., H.A. Kooijman, and R. Taylor, Solving

Stiff Differential Equations and Differential Algebraic
Perhaps the single most useful additional capability of Re- Systems with Maple V Maple TecB(2), 47-53, 1996.
lease 4 of Maple V (the current version is Release 5) was}s Kooijman, H.A. and R. Taylor, Numerical Computing
ability to read binary random access files of arbitrary for- With Maple - Solving PDEs by the Method of Lines,
mat. Maple's new found abilities at handling binary data were, under review, 1998.
however, flawed since, other than conversion to and frok#- Taylor, R., R. Baur, and J. Oprea, Maple Maps, under
text strings, Release 4 did not come with utilities to convert review, 1998.
binary data into the integers and floating point numbers th?  Klimek, G. and M. KlimekDiscovering Curves and
could be used in other computations. Following a request by Surfaces with MapleSpringer, New York, 1997.
this author posted on the internet, electrical engineer Joe Ri8l Gibbs, J.W., The Scientific Papers of J.W. Gibbs, Ph.D.,
provided the functions needed to make it very easy to ma- LLD., Volume 1 - Thermodynamics, Dover, New York,
nipulate binary data within Maple. We have, for example, 1961.
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293, American Mathematical Society, 1990.

Coy, D.C., Visualizing Thermodynamic Stability and
Phase Equilibrium through Computer Graphics. Ph.D.
thesis, lowa State University, 1993.
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teractive Computer Graphigshem. Eng. Progres§4-

69, Feb. 1989.

Jolls, K.R., M.C. Schmitz, and D.C. Coy, Seeing is Be-
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Engineer, 42-46, May 30, 1991.

Fidkowski, Z.T., M.F.Malone, and M.F. Doherty, Com-
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Comput. Chem. Engl7, 1141-1155, 1993.

Foucher, E.R., M.F. Doherty, and M.F. Malone, Auto-
matic Screening of Entrainers for Honogeneous
Azeotropic DistillationInd. Eng. Chem. Resear@®9,
760-772, 1991;
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Web Sites

Claude Gomez:
www-rocq.inria.fr/scilab/gomez/transfor/transfor.html

R.

Taylor:

www.clarkson.edu/~chengweb/faculty/taylor/taylor.html

Alexander F. Walz:
www.SunSite.informatik.rwth-achen.de/maple/maplev.html
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The Numerical Method of Lines for Partial

Differential Equations

Michael B. Cutlip, University of Connecticut and
Mordechai Shacham, Ben Gurion University of the Negev

The method of lines is a general technique for solving par- ar 9°T
tial differential equations (PDES) by typically using finite X = ay
difference relationships for the spatial derivatives and ordi-

nary differential equations for the time derivative. WilliamvhereT is the temperature in K, is the time in s, and is
E. Schiesser at Lehigh University has been a major proplee thermal diffusivity in ils given byk/oc, In this treat-
nent of the numerical method of lines, NMOLThis solu- ment, the thermal conductivityin W/m-K, the densitp in
tion approach can be very useful with undergraduates wheyim’ and the heat capacityin J/kg-K are all considered to
this technique is implemented in conjunction with a convbe constant.

nient ODE solver package such as POLYMATH.

1)

Consider that a slab of material with a thickness 1.00 m is
A Problem in Unsteady-State Heat Transfer 3 supported on a nonconducting insulation. This slab is shown

in Figure 1. For a numerical problem solution, the slab is
This approach can be illustrated by considering a problentiimided intoN sections witiN + 1 node points. The slab is
unsteady-state heat conduction in a one-dimensional dihabally at a uniform temperature of 10C€. This gives the
with one face insulated and constant thermal conductivityiagial condition that all the internal node temperatures are
discussed by Geankopfis. known at time = 0.

Unsteady-state heat transfer in a slab in the x direction is Tha=100fon=2.. N+ 1)att=0 )
described by the partial differential equation

Exposed Surface
Boundary Conditions:
{a) & (b) 77 is main-
tained at constant
value

{c) Convective heat
transfer to 7

Ty

Figure 1. Unsteady-State Heat Conduction in a One-dimensional Slab

t Schiesser. W.EThe Numerical Method of LinesSan Diego, CA: Academic Press. 1991.

2 POLYMATH is a numerical analysis package for IBM-compatible personal computers that is available through the CACHE
Corporation. Information can be found at www.polymath-software.com.

8 This problem is adapted in part from Cutlip, M.B., and M. ShacRaotblem Solving in Chemical Engineering with Numerical
Methods Englewood Cliffs, NJ: Prentice Hall, 1999.

4 Geankopolis. C.Jransport Processes and Unit Operatior8&d ed. Englewood Cliffs. NJ: Prentice Hall, 1993.
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If at time zero the exposed surface is suddenly held const#at can be solved for 'Ito yield
at a temperature of I, this gives the boundary condition
at node 1: AT T (7
Tl=Of0rt >0 (3) 1 3
The problem then requires the solution of Equations (3), (5),
AXd (7) which results in nine simultaneous ordinary differ-
ential equations and two explicit algebraic equation for the
11 temperatures at the various nodes. This set of equations
—0fort >0 (4) can be entered into the POLYMATH Simultaneous Differ-
ential Equation Solver or some other ODE solver. The re-
sulting equation set for POLYMATH is
Note that this problem is equivalent to having a slab of twice
the thickness exposed to the initial temperature on both fadaguations:
d(T2)/d(t)=alpha/deltax*2*(T3-2*T2+T1)
. . . d(T3)/d(t)=alpha/deltax*2*(T4-2*T3+T2)
Pro_blem @) - Numerlcal[y solve Equation (1) with the d(T4)/d(t)=alpha/deltax"2*(T5-2*T4+T3)
initial and boundary conditions of (2), (3), and (4) for the _ Ay %
2 ) d(T5)/d(t)=alpha/deltax*2*(T6-2*T5+T4)
case wherea = 2 x 10m*/s and the slab surface is held _ Ay %
o . . . d(Te6)/d(t)=alpha/deltax*2*(T7-2*T6+T5)
constant atT, = 0°C. This solution should utilize the nu- _ Ay %
ical thod of i ithN = 10 i Plot th d(T7)/d(t)=alpha/deltax*2*(T8-2*T7+T6)
:“e”ca ;“e OT OT '”Tes Wi 4T as | Set.c 'O“S'f " 0 : € d(T8)/d(t)=alpha/deltax 2*(T9-2*T8+T7)
emperatures {2, s, 14, and 1s as functions oTime 10 4 19yq(t)=alpha/deltax*2*(T10-2*T9+T8)

6000 s. d(T10)/d(t)=alpha/deltax~2*(T11-2*T10+T9)

) i . alpha=2.e-5
For this problem with N=10 sections of length Ax=0.1m, 1

Equation (1) can be rewritten using a central difference for- T11=(4*T10-T9)/3

at nodeN + 1 allows no heat conduction. Thus

OTN+1 _

mula for the second derivative as deltax=.10
I _ =—> (The1 = 2T + T—q) for (2< n<10) The initial condition for each of thE's is 100 and the inde-
o (A ) (5)  pendent variablé varies from 0 to 6000. The plots of the

temperatures in the first four sections, node points 2 ... 5
The boundary condition represented by Equation (4) cang¥e shown in Figure 2. The transients in temperatures show
written using a second-order backward finite difference agn approach to steady state. The numerical results are com-
pared to the hand calculations of a finite difference solution
dT]_l _ 3T11 - 4T10 + T9

=0
X 20x (6)
110.000—
KEY: 90,000
-T2
T3 o
=T % 70.000
--T5 ©
S
3
I
P
% 50.000
£
&
K
30.000
10.000 s } : | : ! } } } |
0.000 1.200 2.400 3.400 4.800 6.000
Time in s ¢ *1073)

Figure 2. Temperature Profiles for Unsteady-state Heat Conduction in a One-dimensional Slab
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by Geankoplié (pp. 471-3) at the time of 6000 s in Table lperatures at corresponding nodes increase as the insulated
These results indicate that there is general agreement regaadmdary of the slab is approached.
ing the problem solution, but differences between the tem-

Table 1. Results for Unsteady-state Heat Transfer in a One-dimensional Slabtat 6000 s

Distance Geankoplis Numerical Method of Lines
from Slab Ax=02m Ax=0.1m Ax =0.05m Ax =0.0333m
Surface in m N=5 N=10 N =20 N =30

n T n T n T n T

0 1 0.0 1 0.0 1 0.0 1 0.0
0.2 2 31.25 3 31.75 5 31.68 7 31.67
0.4 3 58.59 5 58.49 9 58.47 13 58.47
0.6 4 78.13 7 77.46 13 | 77.49 | 19 77.50
0.8 5 89.84 9 88.22 17 88.29 25 88.31
1.0 6 93.75 11 91.66 21 91.72 31 91.73

Problem (b) - Repeat Problem (a) with 20 sections and forward difference equation for the first derivative can be
compare results with part (a). applied at the surface

The validity of the numerical solution can be investigated
by doubling the number of sections for the NMOL solution. ar = (-Tz +4T, =31, )
This involves adding an additional 10 equations given by Kly=0 24X

the relationship in Equation (5), modifying Equation (7) to
calculate 7,1, and halving Ax. The results for these changes
in the POLYMATH equation set are also summarized in Table
1 as are similar results for 30 sections. Here the numerical K (-T3 +4T, -3Ty)

and can be substituted into Equation (8) to yield

solutions are similar to the previous solution in part (a) as h(To=T1) =~ 2/ (10)
the temperature profiles are virtually unchanged as the num-

ber of section is increased. The preceding equation can be solved-mdlo give
Problem (c) - Repeat parts (a) and (b) for the case where

heat convection is present at the slab surface. The heat T = 2hToAx — KTz + 4KT, (11)
transfer coefficient is h =25.0 W/m 2 ‘K, and the thermal 1= 3Kk + 2hAx

conductivity is k =10.0 W/m-K.

When convection is considered as the only mode of h%%d the above equation can be used to calcqlaterlng

transfer to the surface of the slab, an energy balance can eeNMOL solution.

made at the interface that relates the energy input by Qe resulting equation set for POLYMATH Ak = 0.10 m
vection to the energy output by conduction. Thus at any ti%er N=10is '
for transport normal to the slab surface in the x direction

Equations:
h(To - Ty) = k9T (8) d(T2)/d(t)faIpha/deltax"Z*(T3—2*T2+T1)
Xlx=0 d(T3)/d(t)=alpha/deltax"2*(T4-2*T3+T2)

d(T4)/d(t)=alpha/deltax"2*(T5-2*T4+T3)
wherehis the convective heat transfer coefficient in \i#n d(T5)/d(t)=alpha/deltax"2*(T6-2*T5+T4)
andTy is the ambient temperature. d(T6)/d(t)=alpha/deltax"2*(T7-2*T6+T5)
= ND* _O%
The preceding energy balance at the slab surface can be g Tégﬁg:::pﬂzgg:giéﬂrgg-g%ﬂ%
to determine a relationship between the slab surface te '9)/d(t)=a|Eha/deltax"2*(T10-2*T9+T8)

perature T, the ambient temperaturg,Tand the tempera- _ Now o
tures at internal node points. In this case, the second-or%glo)/d(t) alpha/deltax"2*(T11-2*T10+T9)
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alpha=2.e-5
deltax=.10
T11=(4*T10-T9)/3
h=25.

T0=0

k=10.

T1=2*h*T0*deltax-k*T3+4*k*T2)/(3*k+2*h*deltax)

The preceding equation set can be integrated to any time ¢
with POLYMATH or another ODE solver. The results at ¢ =
1500 s are summarized in Table 2.

Table 2. Results for Unsteady-state Heat Transfer with Convection in a One-dimensional Slabtat 1500 s

Distance Geankoplis Numerical Method of Lines

from Slab Ax=02m Ax=01m Ax=0.05m | Ax=0.0333m
Surface in m N=5 N =10 N =20 N =30
n T n T n T n T

0 1 64.07 1 64.40 1 64.99 65.10

0.2 2 89.07 3 88.13 5 88.77 88.90

0.4 3 98.44 5 97.38 9 97.73 13 97.80

0.6 4 100.00 | 7 99.61 | 13 99.72 19 | 99.74

0.8 5 100.00 9 99.96 17 99.98 25 99.98

1.0 6 100.00 11 100.00 21 100.00 31 100.00

There is reasonable agreement between the various NMOL
results as the number of sections (smaller Ax) is increased.
The slower response of the temperatures within the slab due
to the additional convective resistance to heat transfer is evi-
dent when the temperatures are compared to those presented
in Table 1. Selected temperatures are presented in Figure 3
for the same locations and at the same scale as Figure 2. The
delays in the responses of the various temperatures are quite

evident.

Problem Extensions

There are a number of extensions to this problem that can be
solved with the Numerical Method of Lines. The thermal

conductivity of the solid could vary with the local tempera-
ture. There could be an initial temperature profile in the
solid. Radiative heat transfer to the surface could be consid-
ered in addition to the convection. The convective heat trans-
fer coefficient could be a function of the AT between the
bulk gas and the slab surface. All these possibilities and
more can be solved with the NMOL and an ODE solver such
as POLYMATH. This type of problem can be used to effec-
tively introduce undergraduate students to transient heat
transfer and instruct them to the numerical solution of par-
tial differential equations — a subject area that is not nor-
mally considered in the typical curriculum.

110.000—

S0.000 —

70.000 —

50.000 —

Temperature in C

30.000 —+

F—

10.000 ; }
0.000 1.200

)
T
2.400

I I
T T 1
3.600 4.800 6.000

Time in s ¢ *10™3)

Figure 3. Temperature Profiles for Unsteady-state Heat Transfer with Convection in a One-dimensional Slab
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